Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ГЛОБАЛЬНОЕ ИЗМЕНЕНИЕ КЛИМАТА И ЭКОНОМИКА: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ



© 1999 г. Б. Фомин, Е. Житницкий[18]

 

Наблюдающееся в настоящее время глобаль­ное потепление климата, по общепринятому мне­нию, связано в первую очередь с усилением так называемого " парникового эффекта" из-за антропогенного увеличения концентрации углекис­лого газа, метана и других атмосферных газов. При этом скорость возрастания концентрации СО2 не имеет аналогов в истории Земли. Возника­ют естественные вопросы: каким образом изме­нение климата будет сказываться на мировой экономике и какие меры следует принять для сни­жения его возможных негативных последствий? Сразу же необходимо отметить следующее:

- Человечество отнюдь не бессильно в данной ситуации и в принципе может принять эффектив­ные меры по сохранению существующего клима­та. Однако все эти меры весьма дорогостоящие - например, переход на источники энергии, альтер­нативные традиционным, основанным на сжига­нии ископаемого топлива. Применение таких мер может привести к большему экономическому ущербу, чем собственно от изменений климата.

- " Излишки" углекислого газа в отличие от метана и других газов крайне медленно выводят­ся из атмосферы (за многие столетия). Поэтому эффективно стабилизировать климат можно лишь с помощью существенных и немедленных ограничений на антропогенные выбросы СО2.

- Масштабные преобразования экономики для стабилизации климата, скажем, переход от теп­ловых электростанций к атомным, требуют до­статочно длительного периода времени, измеряе­мого десятилетиями и сравнимого со временем наступления возможного качественного измене­ния климата.

Вышеуказанные обстоятельства существенно сужают временные рамки даже для разработки соответствующих адекватных мер, не говоря об их осуществлении. Однако разработка таких мер крайне затруднена из-за большой неопределенности современных прогнозов изменения клима­та и, соответственно, оценок возможного эконо­мического ущерба. Для решения возникшей гло­бальной проблемы требуется координация усилий политических деятелей и специалистов из самых разных отраслей знаний: экономистов, ма­тематиков, физиков, медиков, социологов и др. Поэтому при поддержке Программы ООН по ок­ружающей среде UNEP (United Nations Enviroment Programme) и Всемирной Метеорологической Ор­ганизации WMO (World Meteorological Organization) в 1988 г. была создана авторитетная Межправи­тельственная комиссия по изменениям климата IPCC (The Intergovernmental Panel on Climate Change). Основные цели этой комиссии таковы:

- оценить доступную научную информацию по изменениям климата;

- оценить социально-экономические последст­вия климатических изменений и их воздействий на окружающую среду;

- сформулировать стратегию реагирования на эти изменения.

За истекшее десятилетие IPCC проделала большую работу по накоплению и анализу ин­формации и подготовила серию отчетов, содер­жащих рекомендации, уже послужившие основой для принятия ряда важнейших международных со­глашений (" Рамочная конвенция по изменениям климата", 1992 г., Рио-де-Жанейро; " Соглашения по ограничениям выбросов СО2", 1997 г., Япония).

В выпуске каждого отчета обычно участвова­ли один-два десятка ведущих авторов и около сотни соавторов из 10-15 стран (в этой работе также принимал участие один из авторов данной статьи). Кроме того, каждый отчет рецензиро­вался несколькими сотнями ведущих специалис­тов соответствующих областей знаний из не­скольких десятков стран. Таким образом, уни­кальные исследования IPCC достаточно полно отражают коллективное мнение специалистов и только они служат основой разработки соответ­ствующих межгосударственных соглашений по стабилизации климата.

К сожалению, эти исследования недостаточно хорошо известны в России.

В отечественной литературе экономические аспекты потепления климата практически не рассматривались, хотя, по мнению авторов, иметь некоторое представление о возможном воздейст­вии климатических изменений на экономику по­лезно всем специалистам, так или иначе связан­ным с данной проблематикой. Поэтому одной из основных целей данной статьи является ознаком­ление общественности с современным состояни­ем проблем, связанных с потеплением климата, именно на основе материалов IPCC.

ПРИЧИНЫ ИЗМЕНЕНИЯ КЛИМАТА

Общеизвестно, что радиационные процессы играют центральную роль в атмосферном тепло-энергообмене и, следовательно, в формировании климата Земли, так как " глобальные долговре­менные динамические процессы регулируются реальными притоками тепла, среди которых од­ним из главных является лучистый" [19]. Мало того, климат крайне чувствителен даже, казалось бы, незначительным изменениям в механизме радиа­ционных процессов. Так, по данным ряда исследо­ваний[20], уменьшение в прошлом солнечной энер­гии, приходящей на Землю, всего на ~1% (в силу ряда астрономических факторов) провоцировало ледниковые периоды. За происходящее же изме­нение климата ответственен, как уже отмеча­лось, " парниковый эффект". Парниковым эф­фектом называется повышение температуры по­верхности Земли (или иных планет) вследствие относительно хорошей прозрачности атмосферы по отношению к солнечному излучению и ее не­прозрачности по отношению к инфракрасному (ИК) излучению.

Интересно отметить, что механизм " парнико­вого эффекта" был описан еще в 1860 г. извест­ным английским физиком Тиндалом. В общих чертах он объясняется поглощением в атмосфере теплового ИК излучения, исходящего от земной поверхности (нагретой солнцем) с последующим его изотропным переизлучением в атмосфере, приводящем к возвращению части первоначаль­ного теплового излучения к поверхности. Эта до­бавка к солнечной энергии, падающей на земную поверхность, и вызывает ее дополнительный ра­зогрев[21]. (В среднем земная поверхность поглоща­ет 168 Вт/м2 солнечной энергии, а испускает 390 Вт/м2 тепловой, причем 324 Вт/м2 возвраща­ется обратно из-за парникового эффекта[22].) Без

парникового эффекта была бы вообще невоз­можна жизнь на Земле (по всяком случае в при­вычных формах), так как средняя глобальная температура тогда равнялась бы всего -20°С вме­сто наблюдающихся +15°С[23].

Важно также отметить, что в прошлом дейст­вительно наблюдались сильные корреляции меж­ду климатом и концентрацией СО2 в атмосфере[24]. На протяжении нескольких последних тысячеле­тий эта концентрация была довольно стабильной и составляла примерно 280 ppmv (280 молекул СО2 на 1 млн. молекул воздуха). Однако с начала интенсивного развития промышленности (при­мерно с середины прошлого столетия) эта кон­центрация начала экспоненциально расти и в на­стоящее время уже составляет около 360 ppmv. Только с 1980 по 1990 г. концентрация СО2 увели­чилась на 17 ppmv (с 337 до 354 ppmv)! Так же рез­ко возрастают концентрации и других парнико­вых газов, в первую очередь метана (за то же де­сятилетие с 1.57 до 1.72 ppmv)[25].

При сохранении таких темпов роста уже при­близительно через 30 лет следует ожидать кон­центрацию парниковых газов в атмосфере, экви­валентную удвоению концентрации СОз (при этом концентрация собственно СО2 будет равна примерно 450 ppmv)[26]. В прошлом при такой кон­центрации парниковых газов (средний Плиоцен, 3-5 млн. лет назад) климат существенно отличал­ся от настоящего: среднеглобальная температура была на 4-5°С выше, отсутствовало оледенение Антарктиды, уровень океана был выше на не­сколько метров и т.п. Установление такого кли­мата за короткий промежуток времени в несколь­ко десятилетий привело бы к глобальной клима­тической катастрофе. Поэтому неудивительно, что в течение ряда последних лет климатические проблемы активно обсуждаются как в научных кругах, так и на межправительственном уровне при активном содействии ООН.

В IPCC также рассматриваются некоторые прогнозы будущего роста концентрации углекис­лого газа в атмосфере, существенно зависящие от выбора стратегии развития промышленности, энергетики, транспорта и т.п. Согласно этим сце­нариям, к концу следующего столетия можно ожидать возрастание концентрации углекислого газа от ~450 ppmv до ~950 ppmv! Вышеуказанные прогнозы основаны на достаточно надежных в настоящее время теориях и моделях углеродного цикла и данных мониторинга СО2[27]. Как уже отме­чалось, ситуация обостряется вследствие возрас­тания антропогенного выброса и других парнико­вых газов - метана, фреонов и др.

Полезно также иметь в виду основные черты природного углеродного цикла (следить за угле­родом удобнее, чем за его соединениями типа уг­лекислого газа из-за химических превращений). Вообще говоря, в атмосфере содержится пример­но 750 гигатонн (Гт) углерода (здесь и далее вели­чины даны для периода 1980-1989 гг.), при этом обмен атмосферы с сушей (растительность, поч­ва) составляет около 60 Гт/год и с океаном около 90 Гт/год, то есть довольно интенсивен. Казалось бы, ежегодная антропогенная эмиссия, составля­ющая всего около 7.1 ± 1.1 Гт/год (5.5 ± 0.5 Гт/год только из-за сжигания угля и нефти и производст­ва цемента), при таком интенсивном обмене могла бы быть легко поглощена, например океаном (где уже содержится около 40000 Гт углерода). Од­нако - и это является установленным фактом - об­мен атмосфера - суша и атмосфера - океан весь­ма инерционен и соответствующие скорости аб­сорбции СОз могут меняться лишь довольно медленно (за столетия). Кроме того, в отличие от метана, озона и других газов, углекислый газ не вступает в химические атмосферные реакции, могущие эффективно выводить его из атмосфе­ры. Иначе говоря, природная " фабрика" по ути­лизации атмосферного углекислого газа не мо­жет быстро наращивать свои мощности, что и при­водит к накоплению углерода (СО2) в атмосфере (в указанный период в атмосфере ежегодно остава­лось около 3.2 Гт углерода). Поэтому, как показы­вают модели углеродного цикла[28], накопившийся в атмосфере " лишний" СО2 приведет к установлению концентрации углекислого газа на новом, бо­лее высоком уровне, причем снижающемся край­не медленно (в течение многих столетий), даже при полном прекращении антропогенной эмиссии. Значит, возможно воздействовать на ситуацию только на стадии накопления СО2, а снижения его установившейся концентрации можно будет до­биться только если срочно принять меры по огра­ничению выбросов в атмосферу.

Однако введение любых таких ограничений требует весьма существенных (а зачастую и весь­ма дорогостоящих) перестроек в экономике. Так, наиболее " безопасный" (но вообще говоря мало реальный) из сценариев, рассмотренных IPCC (1592 с), в котором установившаяся концентрация равна 350 ppmv, предполагает, что дальнейшее удовлетворение растущих энергетических по­требностей человечества будет происходить в ос­новном за счет ядерной энергетики (в развитых странах), а рост энергетических потребностей в развивающихся странах будет незначительным. Но такая перспектива не слишком реальна.

Возникает естественный вопрос: насколько опасны возможные изменения климата при том или ином сценарии развития глобальной эконо­мики и каков безопасный уровень установившей­ся концентрации СО2? Очевидно, только ответив на эти вопросы, можно обоснованно выбрать стратегию по предотвращению возможных нега­тивных последствий изменения климата. К сожа­лению, определенность существующих климати­ческих прогнозов оставляет желать лучшего. Так, имеющиеся оценки увеличения среднеглобальной температуры и повышения уровня океа­на при удвоении содержания СО2 в атмосфере дают разброс в 1.5-4.5°С и 30-140 см, соответ­ственно[29]. Иначе говоря, по одним оценкам кли­мат почти не изменится, а по другим - может про­изойти чуть ли не климатическая катастрофа.

В свою очередь неудовлетворительная надеж­ность климатических прогнозов обусловлена сложностью описания процессов переноса сол­нечной и тепловой энергии в атмосфере и моде­лирования обратных связей в системе атмосфе­ра-суша-океан. Так, поглощение солнечной и тепловой радиации в ИК области имеет очень сложную зависимость от энергии, так как опреде­ляется колебательно-вращательными ИК-спектрами поглощения молекул водяного пара, угле­кислого газа, озона и др. (при моделировании радиационных процессов требуется учесть не­сколько десятков мегабайт информации о не­скольких сотнях тысяч спектральных линий газов). Большие трудности представляет и моде­лирование переноса солнечной энергии в облачной атмосфере из-за весьма неоднородной структуры облаков. Недавно было установлено, что существующие радиационные блоки клима­тических моделей (программы, где вычисляются параметры атмосферного радиационного тепло­обмена) могут давать рассогласование в расчетах потоков атмосферной радиации в десятки про­центов, тогда как изменения в потоках при удвое­нии СО2 - всего порядка одного процента[30]. В ре­зультате чисто научная проблема моделирования атмосферных радиационных процессов сдержи­вает решение важнейших практических проблем, имеющих общечеловеческую значимость.

Однако в последнее время, наконец, были ос­воены более адекватные методы теоретического исследования переноса атмосферной радиации[31]. Кроме того, бурно развиваются эксперименталь­ные исследования в этой области, в том числе с использованием спутников. В этой связи особо следует отметить американскую программу экс­периментально-теоретических исследований ат­мосферной радиации ARM (Atmospheric Radiation Measurements)[32]. В рамках этой программы на специальных полигонах проводятся уникальные натурные эксперименты по измерениям атмо­сферной радиации в различных климатических зонах. Все это позволяет надеяться на получение качественно новых методик радиационных рас­четов, обладающих достаточной точностью для целей прогнозирования климатических измене­ний уже в ближайшее десятилетие.

Очень важно также правильно учесть много­численные обратные связи в климатической сис­теме. Например, дополнительный разогрев атмо­сферы из-за парникового эффекта вызовет уве­личение испарения воды и приведет к еще большему разогреву вследствие поглощения ра­диации водяным паром. Кроме того, рост испаре­ния приведет к увеличению облачности. Это, с одной стороны, будет способствовать охлажде­нию атмосферы из-за отражения солнечной ра­диации облаками, а с другой - усилит разогрев вследствие экранирования тепловой радиации. (По этим причинам, как хорошо известно, в лет­ний, ясный, солнечный день теплее, чем в пасмур­ный, тогда как при отсутствии облаков ночи хо­лоднее.) В целом, как показывают расчеты, " из­начальный" парниковый эффект по причине подобных обратных связей будет увеличиваться в несколько раз. Неизвестен лишь точный коэф­фициент такого увеличения.

Для кардинального улучшения климатических прогнозов в настоящее время развернуты широ­комасштабные разработки в рамках Всемирной программы исследования климата (" World Climate Research Programme" ) и Международной геосферно-биосферной программы (" International Geosphere-Biosphere Programme" ). Все это также позволяет надеяться на существенное улучшение климатических прогнозов в самом ближайшем будущем.

Однако уже сейчас существует возможность сравнивать различные факторы воздействия на климат с помощью понятия " радиационного фор­синга" (radiactive forcing). Опуская некоторые подробности, можно определить радиационный форсинг как характерное изменение потоков ра­диации из-за данного фактора, измеряемое в Вт/м2 (см. табл. 1).

 

Таблица 1. Радиационные форсинги (в Вт/м2) на насто­ящий момент в сравнении с серединой прошлого века от наиболее существенных климатообразующих факторов

CO2 СН4 N2O, фреоны Озон Аэро­золи Солнечная радиация
1.5 0.5 0.5 0.5 -1.0 0.3

Источник: по данным IPCC.

 

Как следует из этой таблицы, суммарный фор­синг в настоящий момент составил около 2 Вт/м2, причем форсинг от увеличения СО2 доминирует. Как полагают многие специалисты по климату, это уже привело к увеличению среднеглобальной температуры примерно на 0.5°. Полезно также отметить, что форсинг от удвоения СО2 должен быть около 4.5 Вт/м2, то есть будет уже в не­сколько раз превышать все другие форсинги. Это хорошо иллюстрирует широко распространенное мнение о начале существенных климатических изменений и необходимости принятия безотлага­тельных мер по стабилизации климата.


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 155; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь