Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Виды одномерных фильтрационных потоков газа и расчёт основных фазовых характеристик этих потоков
Одномерным называется фильтрационный поток жидкости или газа, в котором скорость фильтрации, давление и другие характеристики течения являются функциями только одной координаты, отсчитываемой вдоль линии тока. Наиболее характерными, применительно к процессам фильтрации нефти, воды и газа, одномерными потоками являются: прямолинейно-параллельный фильтрационный поток; плоскорадиальный фильтрационный поток; радиально-сферический фильтрационный поток. Приведем краткое описание этих потоков. Прямолинейно-параллельный фильтрационный поток. Предположим, что при фильтрации флюида траектории всех частиц параллельны, а скорости фильтрации во всех точках любого поперечно го (перпендикулярного линиям тока) сечения равны друг другу. Законы движения вдоль всех траекторий такого фильтрационного потока одинаковы, а поэтому достаточно изучить движение вдоль одной из траекторий, которую можно принять за ось координат ось x (рис.1). Прямолинейно-параллельный поток имеет место в лабораторных условиях при движении жидкости или газа через цилиндрический керн или через прямую трубку постоянного диаметра, заполненную пористой средой; на отдельных участках продуктивного пласта при движении жидкости к батарее скважин, если пласт постоянной толщины имеет в плане форму прямоугольника (рис.1).
Рис.1 - Схема прямолинейно-параллельного потока к батарее скважин
Плоскорадиальный фильтрационный поток. Предположим, что имеется горизонтальный пласт постоянной толщины h и неограниченной или ограниченной протяженности. В пласте пробурена одна скважина, вскрывшая его на всю толщину и имеющая открытый забой. При отборе жидкости или газа их частицы будут двигаться по горизонтальным траекториям, радиально сходящимся к скважине. Такой фильтрационный поток называется плоскорадиальным. Картина линий тока в любой горизонтальной плоскости будет одинакова, и для полной характеристики потока достаточно изучить движение флюида в одной горизонтальной плоскости. В плоскорадиальном одномерномпотоке давление и скорость фильтрации в любой точке зависят только от расстояния rданной точки от оси скважины. На рис. 2 а, бприведена схема плоскорадиального фильтрационного потока. Схематизируемый пласт ограничен цилиндрической поверхностью радиусом Rк, (контуром питания), на которой давление постоянно и равно рк; на цилиндрической поверхности скважины радиусом rс (забой скважины) давление равно рс. Кровля и подошва пласта непроницаемы. На рис. 2, б приведены сечение пласта горизонтальной плоскостью и радиальные линии тока, направленные к скважине. Если скважина не добывающая, а нагнета тельная, то направление линий тока надо изменить на противоположное. Во всех расчётах для плоскорадиального фильтрационного потока dS=-dr.
Рис.2 - Схема плоскорадиального потока в круговом пласте
А-общий вид, б-пласт Радиально-сферический фильтрационный поток. Рассмотрим схему пласта неограниченной толщины с плоской горизонтальной непроницаемой кровлей. Скважина сообщается с пластом, имеющим форму полусферы радиусом Rк, рис. 3. Рис.3 - Вертикальное сечение радиально-сферического фильтрационного потока
При эксплуатации такой скважины траектории движения всех частиц жидкости или газа в пласте будут прямолинейными в пространстве и радиально сходящимися в центре полусферического забоя, в точке О. В таком установившемся потоке давление и скорость в любой его точке будут функцией только расстояния rэтой точки от центра полусферы. Следовательно, этот фильтрационный поток является также одномерным и называется радиально-сферическим. Такой поток может реализовываться вблизи забоя, когда скважина вскрывает только самую кровлю пласта или глубина вскрытия h значительно меньше толщины пласта. Для расчёта перечисленных характеристик одномерных фильтрационных потоков газа можно использовать два подхода. Первый из них вывод дифференциальных уравнений и их решение отдельно для прямолинейно-параллельного, плоскорадиального и радиально-сферического потоков жидкости и газа. Второй-вывод обобщенного уравнения одномерного течения флюида в недеформируемой трубке тока переменного сечения с использованием функции Лейбензона
(1)
и получение из него конкретных формул применительно к различным схемам фильтрационных потоков. Второй подход более эффективен, позволяет исходить из обобщенных характеристик течения.
|
Последнее изменение этой страницы: 2020-02-17; Просмотров: 191; Нарушение авторского права страницы