Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Структурные элементы нервной клетки



 

Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы, и различных отростков. Многочисленные древовидно разветвлённые отростки дендриты служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон, который передаёт нервные импульсы дальше – другой нервной клетке или рабочему органу (мышце, железе). Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.

Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от 6-7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного и спинного мозга).

В крупных нейронах почти четверть их тела составляет ядро. Оно довольно постоянное количество дезоксирибонуклеиновой кислоты (ДНК). Входящие в его состав ядрышки участвуют в снабжении клетки рибонуклеиновыми кислотами (РНК) и протеинами. В моторных клетках при двигательной деятельности ядрышки заметно увеличиваются в размерах. Нервная клетка покрыта плазматической мембраной – полупроницаемой клеточной оболочкой, которая обеспечивает регуляцию концентрации ионов внутри клетки и её обмен с окружающей средой. При возбуждении проницаемость клеточной мембраны изменяется, что играет важнейшую роль в возникновении потенциала действия и передаче нервных импульсов. Аксоны многих нейронов покрыты миелиновой оболочкой, образованной Шванновскими клетками, многократно «обёрнутыми» вокруг ствола аксона. Однако начальная часть аксона и расширение в месте его выхода из тела клетки – аксоный холмик лишены такой оболочки. Мембрана этой немиелинизированной части нейрона – так называемого начального сегмента – обладает высокой возбудимостью.

Внутренняя часть клетки заполнена цитоплазмой, в которой расположены ядро и различные органоиды. Цитоплазма очень богата ферментными системами и белком. Её пронизывает сеть трубочек и пузырьков – эндоплазматический ретикулюм. В цитоплазме также имеются отдельные зёрнышки – рибосомы и скопления этих зёрнышек – тельца Ниссля, представляющие собой белковые образования, содержащие до 50% РНК. Это белковые депо нейронов, где также происходит синтез белков и РНК. При чрезмерно длительном возбуждении нервной клетки, вирусных поражениях ЦНС и других неблагоприятных воздействиях величина этих рибосомных зёрнышек резко уменьшается.

В специальных аппаратах нервных клеток – митохондриях совершаются окислительные процессы с образованием богатых энергией соединений. Это энергетические станции нейрона. В них происходит трансформация энергии химических связей в такую форму, которая может быть использована нервной клеткой. Митохондрии концентрируются в наиболее активных частях клетки. Их дыхательная функция усиливается при мышечной тренировке. Интенсивность окислительных процессов нарастает в нейронах более высоких отделов ЦНС, особенно в коре больших полушарий. Резкие изменения митохондрий вплоть до разрушения, а, следовательно, и угнетение деятельности нейронов отмечаются при различных неблагоприятных воздействиях (длительном торможении в ЦНС, при интенсивном рентгеновском облучении, кислородном голодании и гипотермии).

 


Обмен веществ в нейроне

 

Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика (в состоянии покоя поглощается около 46мл/мин кислорода). Хотя вес мозга по отношению к весу тела составляет всего 2%, потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей – 50%.Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозге – через 20-30 мин., в стволе головного мозга – через 15-20 мин., а в коре больших полушарий – уже через 5-6-минут. Основным источником энергии для мозговой ткани является глюкоза. Содержание её в клетках мозга очень мало, и она постоянно черпается из крови. Деятельное состояние нейронов сопровождается трофическими процессами – усилением в них синтеза белков. При различных воздействиях, вызывающих возбуждение нервных клеток, в том числе при мышечной тренировке, в их ткани значительно возрастает количества белка и РНК, при тормозных же состояниях и утомлении нейронов содержание этих веществ уменьшается. В процессе восстановления оно возвращается к исходному уровню или превышает его. Часть синтезированного в нейроне белка компенсирует его расходы в теле клетки во время Деятельности, а другая часть перемещается вдоль по аксону (со скоростью около1-3 мм в сутки) и, вероятно участвует в биологических процессах в синапсах.

 


Кровоснабжение нервных клеток

 

Высокая потребность нейронов в кислороде и глюкозе обеспечивается интенсивным кровотоком. Кровь протекает через мозг в 5-7 раз скорее, чем через покоящиеся мышцы. Мозговая ткань обильно снабжена кровеносными сосудами. Наиболее густая сеть их находится в коре больших полушарий (занимает около 10% объёма коры). Каждый крупный нейрон имеет несколько собственных капилляров у основания тела клетки, а группы мелких клеток окутаны общей капиллярной сетью. При активном состоянии нервной клетки, она нуждается в усиленном поступлении через кровь кислорода и питательных веществ. Вместе с тем жёсткий каркас черепа и малая сжимаемость нервной ткани препятствует резкому увеличению кровоснабжения мозга при работе. Однако это компенсируется выраженными в мозгу процессами перераспределения крови, в результате которых активный участок нервной ткани получает значительно больше крови, чем находящийся в покое. Возможность перераспределения крови в мозгу обеспечена наличием в основаниях артериальных ветвей крупных пучков гладких мышечных волокон – сфинктерных валиков. Эти валики могут уменьшать или увеличивать диметр сосудов и тем самым производить раздельную регуляцию кровоснабжения разных участков мозга. Мышечная работа вызывает снижение тонуса стенок мозговых артерий. При развитии физического и умственного утомления тонус артериальных сосудов повышается, что ведёт к уменьшению кровотока через нервную ткань. В головном мозгу имеется богато развитая система анастомозов между различными артериями, между венозными сосудами и между артериями и венами. Эта система уменьшает пульсацию внутричерепного кровотока, обусловленную ритмическими сокращениями сердца и дыхательными движениями грудной клетки. Уменьшение пульсовых колебаний способствует улучшению тканевого кровотока. Благодаря наличию артериовенозных анастомозов пульсовые колебания кровотока передаются с артерии мозга на вены, минуя капилляры. Анастомоз между системами сонных и позвоночных артерий гарантирует постоянство кровотока в различных отделах головного мозга при любом положении головы по отношению к туловищу и направлении силы тяжести, связанном с изменением положения тела в пространстве.


Клетки глии

 

В процессе питания нервных клеток и их обмене веществ участвуют также окружающие нейрон клетки глии (глиальные клетки, или нейроглия). Эти клетки заполняют в мозгу всё пространство между нейронами. В коре больших полушарий их примерно в 5 раз больше, чем нервных клеток. Капилляры в центральной нервной системе плотно окружены клетками глии, которые покрывают сосуд или оставляют небольшую часть (15%) свободной. Выросты некоторых глиальных клеток расположены частично на кровеносных сосудах и частично в нейроне. Полагают, что расположение этих клеток между сосудом и нейроном указывает на их роль в снабжении нервных клеток питательными веществами из крови. Глиальные клетки активно участвуют в функционировании нейрона. Показано, что при длительном возбуждении в нейроне высокое содержание белка и нуклииновых кислот поддерживается за счёт клеток глии, в которых их количество соответственно уменьшается. В процессе восстановления после работы запасы белка и нуклииновых кислот сначала нарастают в клетках глии, а затем в цитоплазме нейрона. Глииальные клетки обладают способностью перемещаться в пространстве по направлению к наиболее активным нейронам. Это наблюдается при различных афферентных раздражениях и при мышечной нагрузке. Например, уже через 20 мин плавания у крыс было обнаружено увеличение числа глииальных клеток вокруг мотонейронов переднего рога спинного мозга.

Возможно, клетки глии участвуют в условно-рефлекторной деятельности мозга и в процессах памяти.


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 62; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь