![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Несимметричная теория гравитации ⇐ ПредыдущаяСтр 6 из 6
Несимметричная теория гравитации (НТГ) Джона Моффата представляет собой вариант классической теории гравитации, который предлагает объяснение загадке темной материи. В общей теории относительности гравитационное поле характеризуется симметричным тензором ранга 2, известным как метрический тензор. Возможность обобщения метрического тензора рассматривалась многими, в том числе Эйнштейном. В общем случае (произвольный несимметричный) тензор всегда можно разложить на симметричную и антисимметричную части. Так как электромагнитное поле характеризуется антисимметричным тензором ранга 2, то существует очевидная возможность для построения единой теории в виде несимметричного тензора, состоящего из симметричной части, представляющей гравитацию, и антисимметричной части, представляющей электромагнетизм. Исследования в этом направлении в конечном счете оказались безуспешными - желаемой классической единой теории поля не было найдено. В 1979 году Моффат заметил, что антисимметричная часть обобщенного метрического тензора не обязательно должна представлять электромагнетизм; она может представлять собой некий новый гипотетический вид взаимодействия. Позднее, в 1995 году, Моффат отметил, что поле, соответствующее антисимметричной части, не обязательно должно быть безмассовым, как это имеет место в случае с электромагнитным (а также гравитационным) взаимодействием. В своем первоначальном виде теория может быть нестабильной, хотя это было показано только для линеаризованного варианта теории. В приближении слабого поля, когда взаимодействие между полями не принимается во внимание, НТГ характеризуется симметричным тензорным полем ранга 2, антисимметричным тензорным полем, а также константой, характеризующей массу антисимметричного тензорного поля. Было найдено, что антисимметричное тензорное поле должно удовлетворять уравнениям Максвелла-Прока для массивного антисимметричного тензорного поля. Это привело Моффата к предложению Метрической-Кососимметрично-Тензорной теории гравитации, в которой кососимметрическое тензорное поле постулируется как часть гравитационного действия.
Теория струн Теория струн - направление математической физики, изучающее динамику и взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Теория струн основана на гипотезе, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10− 35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени.
Рис. 4. Взаимодействие в микромире: диаграмма Фейнмана в стандартной модели и её аналог в теории струн.
Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строения адронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий. Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби - Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби - Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта», в связи с чем некоторые учёные сомневаются, заслуживает ли теория струн статуса научной. Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном, алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий и сущность материи и квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере.
ЗАКЛЮЧЕНИЕ
ОТО - завершенная физическая теория. Она завершена в том же смысле, что и классическая механика, классическая электродинамика, квантовая механика. Подобно им, она дает однозначные ответы на физически осмысленные вопросы, дает четкие предсказания для реально осуществимых наблюдений и экспериментов. Однако, как и всякая иная физическая теория, ОТО имеет свою область применимости. Так, вне этой области лежат сверхсильные гравитационные поля, где важны квантовые эффекты. Законченной квантовой теории гравитации не существует. ОТО - удивительная физическая теория. Она удивительна тем, что в ее основе лежит, по существу, всего один экспериментальный факт, к тому же известный задолго до создания ОТО (все тела падают в поле тяжести с одним и тем же ускорением). Удивительна тем, что она создана в большой степени одним человеком. Но прежде всего ОТО удивительна своей необычайной внутренней стройностью, красотой. Не случайно Ландау говорил, что истинного физика-теоретика можно распознать по тому, испытал ли человек восхищение при первом же знакомстве с ОТО. Примерно до середины 60-х годов ОТО находилась в значительной мере вне основной линии развития физики. Да и развитие самой ОТО отнюдь не было весьма активным, оно сводилось в большой степени к выяснению определенных тонких мест, деталей теории, к решению пусть важных, но достаточно частных задач. Вероятно, одна из причин такой ситуации состоит в том, что ОТО возникла в некотором смысле слишком рано, Эйнштейн обогнал время. С другой стороны, уже в его работе 1915 года теория была сформулирована в достаточно завершенном виде. Не менее важно и то обстоятельство, что наблюдательная база ОТО оставалась очень узкой. Соответствующие эксперименты чрезвычайно трудны. Достаточно напомнить, что красное смещение удалось измерить лишь спустя почти 40 лет после того, как было обнаружено отклонение света в поле Солнца. На протяжении более 80 лет теория Эйнштейна демонстрирует свою необычайную стройность, экономность построения и красоту. На данный момент существует множество экспериментов и наблюдений, подтверждающих правильность общей теории относительности Эйнштейна и не наблюдается физических явлений, противоречащих ей. Следовательно, ОТО скорее верна чем нет.
ЛИТЕРАТУРА
1. Берков А.В., Кобзарев И.Ю. Теория тяготения Эйнштейна. Общие принципы и экспериментальные следствия. М.: МИФИ, 1989. . Берков А.В., Кобзарев И.Ю. Приложения теории тяготения Эйнштейна к астрофизике и космологии. М.: МИФИ, 1990. . Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1988. . Новиков И.Д. Энергетика черных дыр. М.: Знание, 1986. 1. < http: //ru.wikipedia.org/wiki/Альтернативные_теории_гравитации> . < http: //www.astronet.ru/db/msg/1210272> |
Последнее изменение этой страницы: 2020-02-17; Просмотров: 111; Нарушение авторского права страницы