Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Синдромное тестирование или метод счёта единиц.



Синдромом (контрольной суммой) некоторой булевой функции n переменных является соотношение

S=R/2n,

Где R вычисляется по выражению

R=

Для l=2n и равно числу единичных значений функции согласно таблице истинности. Определение понятия синдрома однозначно предполагает использование генератора счётчиковых последовательностей двоичных комбинаций из n входных переменных при тестировании схемы, реализующей заданную функцию.


2.5 Блок поиска неисправностей.

 

С помощью многоканальных сигнатурных анализаторов можно существенно ускорить процедуру контроля цифровых схем, которая увеличивается в n раз, где n-количество входов применяемого анализатора. В случае совпадения реально полученной сигнатуры с её эталонным значением считается, что с достаточно высокой вероятностью проверяемая схема находится в исправном состоянии. На этом процедура её исследования оканчивается. В противном случае, когда схема содержит неисправности, реальная сигнатура, как правило, отличается от эталонной, что служит основным аргументом для принятия гипотезы о неисправном состоянии схемы. В то же время вид полученной сигнатуры не несёт никакой дополнительной информации о характере возникшей неисправности. Более того остаётся открытым вопрос о том, какие из n анализируемых последовательностей, инициирующих реальную сигнатуру, содержат ошибки, т.е. возникает задача локализации неисправности с точностью до последовательности, несущей информацию о её присутствии.

Суммарная сигнатура S(x), полученная для последовательности {yv(k)}, v=1, n, k=1, l, на n-канальном сигнатурном анализаторе, равна поразрядной сумме по модулю два сигнатур Sv(x), v=1, n. Причём каждая сигнатура Sj(x), jÎ {1, 2, 3, …n}, формируется для последовательности {yj(k)} при условии, что {yq(k)}=0000…00, q¹ jÎ {1, 2, …, n}.

Алгоритм контроля цифровой схемы с локализацией неисправности до первой последовательности, содержащей вызванные ею ошибки.

1. В результате анализа n=2d реальных последовательностей {y*(k)}, v=1, nб на n-канальном анализаторе определяется значение сигнатуры S*(x), которое соответствует соотношению:

 

.

2. По выражению  вычисляется эталонное значение сигнатуры S(x).

3. Реальное значение сигнатуры S*(x) сравнивается с эталонной сигнатурой S(x). В случае выполнения равенства S*(x)=S(x) переходят к выполнению п.11 и процедура контроля считается оконченной. В противном случае, когда S*(x)¹ S(x), выполняется следующий этап алгоритма.

4. Все множество входных последовательностей разбивается на две группы, причём номера последовательностей {y1(k)}, {y2(k)}, {y3(k)}, …., {yn/2(k)} составляют множество А2={1, 2, 3, …, n/2}, а последовательностей {yn/2+1(k)}, {yn/2+2(k)}, … {yn(k)} – множество А2={n/2+1, n/2+2, …, n}; величине i присваивается значение 1.

5. В результате анализа реальных последовательностей, номера которых задаются множеством А1, на n-канальном анализаторе при условии, что последовательности, номера которых не определены множеством А1, являются нулевыми, определяется значение реальной сигнатуры S*(x).

6. На основании выражения  получаем S(x).

7. Проверяется справедливость равенства S(x)=S*(x). В случае его выполнения элементы множества А1 заменяются элементами множества А2.

8. Значение переменной i увеличивается на единицу. Затем его величина сравнивается с величиной d. При i£ d переходят к следующему пункту алгоритма, в противном случае выполняется пункт 10.

9. По текущим значениям множества А1 формируются новые множества А1 и А2. Новыми элементами множества А1 будет первая половина его текущих элементов, вторая половина присваивается множеству А2. После определения множеств А1 и А2 переходят к выполнению п. 5.

10. Единственный элемент множества А1представляет собой номер ошибочной последовательности, формируемой на одном из полюсов исследуемой схемы.

11. Процедура контроля цифровой схемы считается оконченной.


2.6 Определение оценки эффективности методов сигнатурного анализатора и счёта единиц.

Достоверность сигнатурного анализа.

 

Полнота не обнаружения неисправностей цифровой схемы в первую очередь зависит от качества тестовых воздействий. Если определённая неисправность не проявляется в виде искажения их символов, то она не может быть обнаружена в результате применения сигнатурного анализа, который является не более чем эффективным методом сжатия потока данных. Поэтому если этот поток не несёт информации о неисправности, то она и не появится после его сжатия.

Таким образом, под достоверностью сигнатурного анализа будем понимать его эффективность обнаружения ошибки в потоке сжимаемых данных. Для оценки этой характеристики сигнатурного анализа могут использоваться разные подходы и методы. Наиболее широко применяемым является вероятностный подход, сущность которого заключается в определении вероятности Рn не обнаружения ошибок в анализируемой последовательности данных. Причём в рассматриваемом случае оценивается вероятность, зависящая только от метода сжатия, и не учитываются другие факторы.

Величина Рn рассчитывается для достаточно общего случая, приближённо соответствующего реальным примерам. Предполагается, что эталонная последовательность данных может равновероятно принимать разное значение, а любая конфигурация ошибочных бит может быть равновероятным событием. Далее, использую алгоритм деления полиномов как математический аппарат формирования сигнатуры, показываем, что для l-разрядного делимого вычисляются l-m-разрядное частное и m-разрядный остаток (сигнатура). При этом соответствие реальной последовательности, состоящей из l бит, эталонной оценивается только по равенству их m - разрядных сигнатур. Для 2l-m различных частных будет формироваться одинаковая сигнатура. Это свидетельствует о том, что 2l-m -1 ошибочных l -разрядных последовательностей будут считаться соответствующими одной - эталонной. Учитывая равно вероятность ошибочных последовательностей данных, можно заключить, что 2l-m-1 ошибочных последовательностей, инициирующих эталонную сигнатуру, не обнаруживаемы. Таким образом, вероятность Рn необнаружения ошибок в анализируемой последовательности данных будет вычисляться как отношение:

(2.6.1)

где 2l-1 равняется общему числу ошибочных последовательностей.

Выражение (2.6.1) для условия l> > m преобразуется к более простому виду:

которое может служить основным аргументом для обоснования высокой эффективности сигнатурного анализа.

В качестве более точной меры оценки достоинств сигнатурного анализатора рассмотрим распределение вероятности необнаружения ошибки в зависимости от её кратности m, т.е. определим значение  где m=1, 2, 3,...2m-1.

Можно показать, что не обнаруживаемых ошибок определяется следующим образом:

а количество возможных ошибок из m бит определяется как

И тогда выражение для вероятности не обнаружения ошибки принимает вид:

,

Анализ показывает, что для достаточно больших m , т.е. при m> 7 вероятность обнаружения ошибки практически равняется единице.

 


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 86; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь