Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Импульсные стабилизаторы напряжения



Основным элементом импульсных стабилизаторов напряжения является регулирующий элемент-транзистор, периодически пере­ключающийся из режима насыщения в режим отсечки. Если тран­зистор работает в таком режиме, то значительно снижается мощность, рассеиваемая на регулирующем элементе, что позволяет значительно повысить к. п. д. стабилизатора. В импульсных ста­билизаторах напряжения стабилизация осуществляется за счет изменения соотношения времени открытого и закрытого состояния регулирующего транзистора. При этом среднее значение выходного напряжения поддерживается неизменным с заданной степенью точности при воздействии дестабилизирующих факторов.

Мощность, выделяемая в нагрузке, определяется входным напряжением, сопротивлением нагрузке и соотношением времени открытого и закрытого состояния регулирующего транзистора. Изменяя это соотношение, можно регулировать мощность, вы­деляемую на нагрузке без значительных потерь на регулирующем элементе. Пульсации выходного напряжения, вызванные замыка­нием и размыканием транзисторного ключа, снижаются сглажи­вающим фильтром, включаемым на выходе.

При этом коэффициент сглаживания пульсаций будет тем больше, чем выще частота пульсаций по отношению к собственной частоте контура.

В функциональной схеме силовой цепи компенсационного ста­билизатора с импульсным регулированием (рисунок 5.16, а) регулирующий элемент условно показан в виде ключа S. Индуктивность L, и конденсатор С являются элементами сглаживающего фильтра.

 

Рис.5.16. Функциональные схемы силовой цепи понижающего (а), повышающего (в) и полярно-инвертирующего (г) импульсных стабилизаторов напряжения; кривые изменения напряжений (б)

 

При замыкании ключа S на вход фильтра будет подаваться входное напряжение Uвхв течение времени tп (рисунок 5.16, б) в виде импульса прямоугольной формы. Через катушку индуктивности потечет линейно возрастающий ток, так как э. д. с. самоиндукции ее будет противодействовать основному потоку, создаваемому вход­ным напряжением. Через нагрузку также потечет ток и будет заряжаться конденсатор С. В момент размыкания ключа S ток через индуктивность L достигнет максимального значения. Напряжение на катушке в этот момент, противодействуя пропаданию основного напряжения, поменяет полярность. Откроется диод VD и через нагрузку во время паузы tп потечет ток, замыкающийся по цепи L RHVD. При снижении потенциала катушки ниже потенциала заряженного конденсатора С диод закроется, и ток в нагрузке в этом интервале времени будет сохраняться за счет разряда конденсатора.

Время разомкнутого состояния ключа tПможно подобрать таким, чтобы ток через катушку индуктивности не достигал нулевого значения. При следующем замыкании ключа процесс будет повторяться. Период следования равен сумме длительности импульсов tИ и пауз tG: .

Среднее значение напряжения на выходе фильтра (на нагрузке)

. Из этого выражения следует, что при постоянных значениях напряжения Uвх и периода следования Т напряжение на выходе стабилизатора Uвых будет пропорциональ­но длительности импульса tи. Обозначим отношение tи/Iчерез коэффициент заполнения Кзпричем К3 < 1, тогда напряжение на выходе UВЫХ = К3UВХ.

Очевидно, среднее значение выходного напряжения в такой схеме импульсного стабилизатора всегда меньше среднего значения входного напряжения. Такие стабилизаторы называются понижаю­щими . Постоянство напряжения на выходе понижающих импульс­ных стабилизаторов обеспечивается изменением коэффициента заполнения Кэ.

Для получения на выходе напряжения, превышающего входное, применяют так называемые повышающие импульсные стабилиза­торы. В схеме (рисунок 5.16, в) использованы те же элементы, что и в схеме (см. рисунок 5.16, а), но изменена схема включения ключа и диода VD.

При подаче входного напряжения (ключ S разомкнут ) ток потечет через катушку индуктивности L, диод VD и резистор RH.. Конденсатор С в это время будет заряжаться. При замыкании ключа S увеличится ток через индуктивность L. Диод VDзакрыт, так как к нему будет приложено обратное напряжение заряженного конденсатора С, которое приложено и к нагрузке RH. Конденсатор разряжается на резистор Rн, обеспечивая протекание тока через него в течение времени tи. При размыкании ключа S входное напряжение через индуктивность L, прикладываемое к диоду VD, открывает его и суммируется с остаточным напряжением разряжаемого конден­сатора. Это суммарное напряжение будет приложено к нагрузке RHв течение времени tп. В установившемся режиме конденсатор никогда полностью не разряжается. Следовательно, напряжение на нагрузке (на выходе стабилизатора) всегда будет выше входного напряжения

и будет тем больше, чем больше К3. Индуктивность в этом стабилизаторе не участвует в сглажи­вании пульсации на нагрузке.

С помощью схемы (рисунок 5.16, г) полярно-инвертирующего импульсного стабилизатора на его выходе обеспечивается напря­жение обратной полярности по отношению к входному напря­жению. При включении входного напряжения (ключ S замкнут ), что соответствует интервалу времени tи, через катушку индуктивности L будет протекать ток. Диод VD закрыт, так как к нему приложено входное напряжение обратной полярности.

При размыкании ключа S, когда входной источник отключается, напряжение на катушке индуктивности за счет э. д. с. самоиндукции меняет полярность на обратную и открывается диод VD. За счет энергии, запасенной катушкой индуктивности, питается нагрузка RH. Одновременно с этим заряжается конденсатор С. Следовательно, постоянное напряжение, приложенное к нагрузке, имеет полярность, обратную приложенному входному напряжению Uвх. Во время следующего замыкания ключа закрывается диод VD Под воз­действием напряжения Uвх катушка индуктивности вновь получает энергию от входного источника. В этот интервал времени нагрузка питается от медленно разряжающегося конденсатора С. В даль­нейшем при размыкании ключа конденсатор С будет дозаряжаться, и процессы вновь повторяются. Выходное напряжение полярно-инвертирующего импульсного стабилизатора

.

Из выражения следует, что напряжение на выходе такого ста­билизатора может быть как меньше, так и больше входного напряжения. Оно зависит от коэффициента заполнения.

Из рассмотренных схем импульсных стабилизаторов следует, что на их выходе можно получить регулируемое стабилизированное напряжение больше или меньше входного как прямой, так и обратной полярности. Напряжение в них стабилизируется без применения крупногабаритных элементов, в частности трансфор­маторов. В импульсных стабилизаторах напряжения ключом (тран­зистором) управляют с помощью цепи обратной связи, которая изменяет длительность импульсов или пауз в соответствии с отклонением выходного напряжения от заданного, т.е. цепь об­ратной связи преобразует непрерывный сигнал (отклонение вы­ходного напряжения) в импульсный (дискретный). Это преобразование непрерывного сигнала в дискретный называется кван­тованием.

Таким образом, сигнал, подаваемый на базу регулирующего транзистора, изменяется дискретно в фиксированные моменты времени, определяемые периодом повторения импульсного сигнала. Если на базу транзистора подается импульсный сигнал с постоян­ной частотой повторения, а длительность импульса изменяется в зависимости от изменения выходного напряжения, такое уп­равление называется широтно-импулъсным . Преобразователь не­прерывного сигнала в дискретный называется широтно-импулъсным модулятором (ШИМ). Преобразование, в котором длительность импульса постоянна, а изменяется частота и, следовательно, дли­тельность паузы, называется частотно-импульсным. Сам преоб­разователь при этом называется частотно-импульсным модуля­тором (ЧИМ).

На практике имеется большое разнообразие схем, реализующих тот или иной принцип. Выбор схем управления регулирующим элементом зависит от значений напряжений и токов, а также от ряда других факторов, определяемых в каждом конкретном случае.

В схеме импульсного стабилизатора напряжения (рисунок 5.17, а) ключевым транзистором (ключом S) управляет регулирующий элемент непрерывного действия РИД. Часть выходного напряжения с делителя ДН поступает на вход усилителя постоянного тока УПТ, где сравнивается с опорным напряжением источника ИОН. Сигнал с выхода УПТ подается на регулятор непрерывного действия РНД, который управляет работой импульсного регулирующего элемента S. При воздействии выходного напряжения сигнал на выходе УПТ достигает верхнего порогового значения, срабатывает РИД и выключает регулирующий транзистор S. Напряжение на выходе стабилизатора начинает уменьшаться, так как снижается ток, протекающий через катушку индуктивности iL. Сигнал на выходе УПТ снижается до нижнего порога срабатывания РИД. На выходе РНД появляется импульс, включающий ключ S. Ток через индуктивность возрастает, увеличивается и напряжение на выходе стабилизатора.

 

Рис. 5.17. Структурная (а), принципиальная (б) схемы импульсного стабилизатора напряжения

 

Кроме формирования импульсов управления ключом, РНД осуществляет непрерывную регулировку выходного напряжения. Ток в катушке индуктивности совершает периодические колебания относительно среднего значения с частотой, равной частоте переключения. При замкнутом ключе ток iLнарастает, а при разомкнутом уменьшается. Так как РНД управляется по цепи обратной связи, то при увеличении тока iLснижается ток iр. Вследствие этого колебания выходного напряжения, вызванные прерывистым характером регулирования, оказываются в значи­тельной мере скомпенсированными регулятором непрерывного действия.

В схеме импульсного стабилизатора напряжения с дополни­тельным регулятором непрерывного действия (рисунок 5.17, 6) тран­зистор VT1(ключ) является импульсным регулирующим элементом. Усилитель УПТ выполнен на транзисторе VTЗ. Выходной делитель R4R5и источник опорного напряжения VD2 выполняют те же функции, что и в стабилизаторах с непрерывным регулированием.

Блокинг-генератор, формирующий импульсы управления клю­чом, выполнен на транзисторе VT2. Цепь перезаряда конденсатора С через транзистор VТ2 подключена к выходу стабилизатора. Скорость перезаряда конденсатора С определяет скважность им­пульсов блокинг-генератора. При замкнутом (открытом) положе­нии транзистора VT1часть его базового тока ответвляется в коллек­торную цепь транзистора VT1. Значение тока, протекающего через транзистор VТ2, зависит от сигнала, поступающего с выхода УПТ (транзистор VT3). Наряду с формированием импульсов управления для VT1транзистор VT2 играет роль элемента непрерывного дейст­вия.

Введение регулятора непрерывного действия в импульсный стабилизатор несколько снижает его к. п. д., так как на транзисторе VГ2 будет дополнительно рассеиваться мощность, равная

где IP-среднее значение тока через регулирующий элемент (транзистор VT1). Для уменьшения этой составляющей 2) ток Iр целесообразно уменьшить так, чтобы регулятор выполнял свою функцию непрерывного регулирования и в то же время он должен превышать амплитуду переменной составляющей тока дросселя iL: ,

; .

Оптимальный ток

; .

Тогда минимальная мощность, выделяемая на непрерывном регулирующем элементе,

.

Для уменьше­ния этой мощности необходимо стремиться к возможно меньшей разности напряжений Uвх - Uвыхи к тому чтобы индуктивность дросселя была как можно большей.

Импульсные стабилизаторы имеют значительные преимущества перед стабилизаторами непрерывного регулирования. В них умень­шается мощность рассеивания на регулирующем транзисторе, снижаются масса и габаритные размеры, значительно повышается к. п. д. Эти стабилизаторы являются наиболее перспективными вторичными источниками питания и находят все более широкое применение.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 1417; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь