Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вольт-амперная характеристика диода



 

Свойства диода определяются его вольт - амперной характеристикой (ВАХ), которая показана на рис. 2.7. Приближенно она может быть описана уравнением

I=I0(e U/mjт – 1), (2.1)

где I0 – ток насыщения обратносмещенного перехода (обратный тепловой ток); U–напряжение на p-n – переходе; jт=kT/q– тепловой потенциал, равный контактной разности потенциалов jк на границе p-n перехода при отсутствии внешнего напряжения; k=1, 38× 10-23 Дж/К–постоянная Больцмана; Т–абсолютная температура; q=1, 6× 10-19 кулон – заряд электрона; m поправочный коэффициент, учитывающий отклонение от теории. При температуре Т=300К, jт=0, 026 В.

Рис. 2.7

На ВАХ различают две ветви: прямая ветвь, которая находится в первом квадрате и обратная ветвь в третьем квадрате. Уравнение (2.1) хорошо описывает характеристику реального диода в прямом направлении и для небольших токов. В соответствии с (2.1) сопротивление диода является нелинейным. В случае линейного сопротивления ВАХ была бы прямая линия.

На прямой ветви реальной ВАХ имеется резкий загиб, который характеризуется напряжением включения. Для германиевых диодов напряжение включения равно примерно 0, 3 В, для кремниевых – примерно 0, 6 В.

Значение обратного тока на обратной ветви примерно постоянно в широком диапазоне напряжения. При превышении определенного значения обратного напряжения, называемого напряжением пробоя Uпроб, начинается лавинообразный процесс нарастания обратного тока, соответствующий электрическому пробою p - n – перехода. Если в этот момент ток не ограничить, то электрический пробой перейдет в тепловой. Тепловой пробой обусловлен ростом числа носителей в p-n – переходе. При этом мощность, выделяющаяся в диоде UобрIобр, не успевает отводиться от перехода, его температура растет, растет обратный ток и, следовательно, продолжает расти мощность. Тепловой пробой необратим, т.к. разрушает pn– переход.

Для диода оговаривается несколько основных параметров:

- номинальный прямой ток;

- максимальное обратное напряжение;

- прямое падение напряжения;

- постоянный обратный ток;

- максимальный прямой ток (для него оговаривается режим работы, например, время проводимости).

Преобладают кремниевые диоды, так как имеют более высокую предельную рабочую температуру (150оС против 75оС для германиевых), допускают большую плотность прямого тока (60 ¸ 80 А/см2 по сравнению с 20 ¸ 30 А/см2), обладают меньшими обратными токами (примерно на порядок) и большими допустимыми обратными напряжениями (1500¸ 2800 В по сравнению с 600¸ 800 В). Однако кремниевые диоды имеют большее прямое падение напряжения, которое. для германиевых диодов Uпр=0, 3¸ 0, 4В, а для кремниевых диодов Uпр=0, 6¸ 1, 2 В.

Работоспособность диода определяется выделяемой на нем мощностью P=UI. U и I относятся к определенной точке ВАХ. Мощность определяет нагрев. Рабочий участок диода на ВАХ рис. 2.7 отмечен жирной линией. Если диод начинает работать на нерабочих участках ВАХ, он выходит из строя, поскольку мощность превышает допустимую, нагрев превышает допустимый и диод разрушается.

При рассмотрении режимов работы схем с диодами их представляют в виде идеализированных приборов, которые являются идеальными проводниками в прямом направлении и идеальными изоляторами в обратном направлении. Идеализированная ВАХ представлена на рис. 2.8, а зависимость ВАХ от температуры показана на рис. 2.9.

Рис. 2.8 Рис. 2.9

Типы диодов

 

По назначению различают следующие типы диодов:

– выпрямительные;

– импульсные;

– высокочастотные;

– стабилитроны и стабисторы.

Диоды различают также по мощности и по частотным свойствам.

Выпрямительные диоды. Предназначены для работы при напряжениях частоты до нескольких кГц и при некрутых фронтах питающего напряжения. Не предназначены для прямоугольного питающего напряжения. Для выпрямительных диодов оговариваются два основных параметра:

1.Ток прямой номинальный (среднее значение).

2. Напряжение обратное максимальное (мгновенное).

Диоды выпускаются на ток 10 мА–1000 А. Обратное напряжение находится в пределах от 10 В до нескольких кВ. Для мощных диодов (ток > 10 А) обратное напряжение определяют классом диода. Класс диода – это 100В, умноженное на цифру класса. Цифра класса от 1 до 20. Например: Д50-12, здесь 50 -ток прямой номинальный в А; 12 - класс. Класс - это параметр, используемый для мощных диодов и характеризующий обратное напряжение. У мощных диодов номинальный прямой ток допустим только при установке диода на радиатор и при принудительном охлаждении со скоростью воздуха 12м/с. Без принудительного охлаждения воздухом (имеется только радиатор) допустимый ток составляет около 30% от номинального. У современных диодов распространены следующие обозначения: ДXXXY или КДXXXY, где КД - кремниевый диод, XXX - цифры, Y - буква. Первая цифра говорит о виде диода (выпрямительные - 1, 2). Буква определяет обратное напряжение.

Второстепенные параметры:

1.Максимальный обратный ток Iобр.макс (от десятков нА до десятков мА).

2.Прямое падение напряжения Uпр (0, 3¸ 1, 2В).

3. Максимальная рабочая частота, до которой обеспечиваются заданные токи, напряжения и мощность.

Рис. 2.10

4. Время восстановления запирающих свойств диода.

Диод не проводит (или запирается) при приложении обратного напряжения. Запирание - переход от проводящего состояния к непроводящему. При приложении прямоугольного обратного напряжения диод ведет себя как показано на рис. 2.10. Интервал I - время рассасывания носителей, интервал II - бросок обратного тока. Он связан с наличием барьерной емкости диода. Интервал tв – время восстановления, т.е. время перехода от проводящего состояния до момента установления обратного тока на ВАХ. Из-за неидеальности диода ограничивается предельная частота его работы. При очень высокой частоте диод перестает выполнять свои функции.

Рис. 2.11

Высокочастотные диоды. Для них оговариваются те же параметры (основные и второстепенные), но они могут работать при высокой частоте и обладают малым временем восстановления (по сравнению с выпрямительными). Для них приводится график прямого тока в зависимости от частоты. График представлен на рис. 2.11.

Импульсные диоды. Оговариваются те же основные параметры, что и для рассмотренных выше диодов, и приводится еще важный второстепенный параметр – импульсный ток за оговоренное время.

Стабилитроны и стабисторы. Рабочей частью ВАХ у стабилитронов является обратная ветвь. Прямая ветвь такая же, как у диодов, она также может использоваться.

ВАХ стабилитрона представлена на рис. 2.12. Для стабилитронов указывается два основных параметра:

Uст – напряжение стабилизации стабилитрона;

Iст.н – номинальный ток стабилитрона.

Рис. 2.12 Рис. 2.13

Uст=3, 3¸ 170В. Для Uст указывается разброс в процентах или в вольтах, а также изменение Uст при изменении температуры. У маломощных стабилитронов Iст.min=1¸ 3mА, Iст.max=30mA. Iст.н у мощных стабилитронов составляет несколько сот mA.

Стабисторы – это стабилитроны, у которых используется прямая ветвь ВАХ, т.е. это диод с большим падением напряжения, которое постоянно при изменении тока. ВАХ стабистора показана на рис. 2.13. Такая ВАХ создается технологически. Стабилитроны и стабисторы могут соединяться последовательно, но не параллельно. Они используются в стабилизаторах и ограничителях напряжения.

 

 

Контрольные вопросы

 

1. Что такое потенциальный барьер полупроводникового диода и как он формируется?

2. Охарактеризуйте кратко схемы включения полупроводникового диода.

3. Охарактеризуйте реальную и идеальную вольт – амперные характеристики полупроводникового диода.

4. Перечислите основные параметры полупроводникового диода.

5. Охарактеризуйте основные типы диодов.

6. Перечислите второстепенные параметры полупроводникового диода.

7. Как осуществляется маркировка полупроводникового диода?


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-26; Просмотров: 2170; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь