Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Удельные ресурсы речного стока



Республика Население, тыс. чел (1987 г.) Речной сток, мм Обеспеченность одного жителя речным стоком в средний по водности год, тыс. м3
местный общий местного формирования общим
Россия 29, 2 29, 4
Украина 86, 8 1, 02 4, 10
Беларусь 3, 38 5, 54
Латвия 5, 74 12, 1
Литва 3, 52 6, 37
Эстония 7, 01 10, 0
Грузия 10, 1 11, 6
СССР 15, 7 16, 8

 

 

По степени водообеспеченности страны Европейской части СНГ разделены на 3 зоны: высокой, средней и низкой обеспеченности.

Зона высокой обеспеченности занимает около половины территории, в которой наблюдаются излищки воды, что приводит к образованию болот и заболоченных земель.

Зона средней обеспеченности отличается достаточным количеством водных ресурсов для нужд хозяйства (Центральная Россия, Урал).

Зона низкой, или недостаточной водообеспеченности включает юг Украины, Крым, Донбасс, Заволжье и т. д., где водные ресурсы составляют несколько процентов от всех запасов, а для обеспечения водой необходима переброска воды из других речных бассейнов.

Территория республики Беларусь относится ко второй зоне. По данным ГВК преобладают самые малые и малые реки (табл. 2.6.)

 

Таблица 2.6

Число рек Беларуси и их длина

Градации Интервалы длины, км Число рек Общая длина, км % от общей длины речной сети
Самые малые Менее 25 20 403 65 966
Малые 26 – 100 14 554
Средние 101 – 500 6 702
Большие Более 501 3 409
Всего   20 780 90 631

 

Однако, значительная часть воды находится в водоемах замедленного водообмена, круговорот ресурсов которых происходит за длительный период (табл. 2.7.).

Таблица 2.7

Объемы воды и площаль водной поверхности водотоков и водоемов Беларуси

Водные объекты Объем воды Площадь поверхности
км2 % км2 %
Реки 3, 08 29, 7 1 028 26, 6
Озера 6, 00 50, 0 2 000 50, 2
Водохрани-лища 2, 43 20, 0 16, 2
Пруды 0, 38 0, 3 8, 0
Всего 11, 89 3 935

Происхождение воды и гидросферы

Существует шесть гипотез появления воды на земном шаре.

Первая гипотеза исходит из «горячего» происхождения Земли. Считается, что некогда Земля была расплавленным огненным шаром, который, излучая тепло в пространство, постепенно остывал. Появилась первородная кора, возникли химические соединения элементов и среди них соединение водорода с кислородом, или, проще говоря, вода.

Пространство вокруг Земли все более заполнялось газами, которые непрерывно извергались из трещин остывающей коры. По мере охлаждения пары образовывали облачный покров, плотно окутавший нашу планету. Когда температура в газовой оболочке упала настолько, что влага, содержащаяся в облаках, превратилась в воду, пролились первые дожди. Тысячелетие за тысячелетием низвергались дожди. Они-то и стали тем источником воды, которая постепенно заполнила океанические впадины и образовала Мировой океан.

Вторая гипотеза исходит из «холодного» происхождения Земли с ее последующим разогревом. Разогрев стал причиной вулканической деятельности. Извергаемая вулканами лава выносила на поверхность планеты пары воды. Часть паров, конденсируясь, заполняла океанические впадины, а часть образовала атмосферу. Как теперь подтверждено, главной ареной вулканической деятельности на первых стадиях эволюции Земли действительно являлось дно современных океанов.

Согласно этой гипотезе вода содержалась уже в той первичной материи, из которой сложилась наша Земля. Подтверждением такой возможности является наличие воды в падающих на Землю метеоритах.

Третья гипотеза также исходит из «холодного» происхождения Земли с последующим ее разогревом. В мантии Земли на глубинах 50– 70 км из ионов водорода и кислорода начал возникать водяной пар. Однако высокая температура мантии не позволяла ему вступать в химические соединения с веществом мантии.

Под действием давления пар выжимался в верхние слои мантии, а затем и в кору Земли. В коре более низкие температуры стимулировали химические реакции между минералами и водой, в результате разрыхления пород, образовались трещины и пустоты, которые немедленно заполнялись свободной водой. Под действием давления воды трещины раздавались, превращались в разломы, и вода через них устремлялась на поверхность. Так возникли первичные океаны.

В пользу приведенной гипотезы свидетельствует резкое возрастание скорости сейсмических волн на глубине 15–20 км, т. е. как раз там, где должна пролегать граница предполагаемого раздела между гранитом и поверхностью рассола, граница резкого изменения физико-химических свойств вещества.

Приведенную гипотезу подтверждает и так называемый дрейф материков. Гранитные громады материков перемещаются. Они «плывут», хотя скорость их движения составляет всего несколько сантиметров в столетие.

Четвертая гипотеза принадлежит английскому астрофизику Хойлу и опубликована сравнительно недавно, в 1972 г. Она представляет собой следствие из гипотезы происхождения Солнечной системы. Конденсация протопланетного облака, окружавшего прото-Солнце, протекала неравнозначно на разных расстояниях от Солнца. Чем дальше от него, тем температура облака была ниже. Ближе к Солнцу могли конденсироваться, скажем, металлы как вещества более тугоплавкие. А там, где проходят орбиты Урана, Нептуна и Плутона, по расчетам Хойла, температура составляла примерно 350 К, что уже достаточно для конденсации паров воды. Именно этим обстоятельством можно объяснить «водную» природу Урана, Нептуна и Плутона, образовавшихся в процессе слияния частиц льда и снега. «Водную» природу указанных планет подтверждают новейшие астрономические наблюдения.

Расчеты, выполненные Хойлом, подтверждают возможность образования земных океанов из ледяных дождей, для чего потребовалось всего несколько миллионов лет.

Пятая гипотеза, как и четвертая, предполагает космическое происхождение воды, но из других источников. Дело в том, что на Землю из глубин космоса непрерывно низвергается ливень электрически заряженных частиц. И среди этих частиц изрядную долю составляют протоны – ядра атомов водорода. Пронизывая верхние слои атмосферы, протоны захватывают электроны и превращаются в атомы водорода, которые тут же вступают в реакцию соединения с кислородом атмосферы. Образуются молекулы воды. Расчет показал, что космический источник такого рода способен дать почти 1, 5 т воды в год, и эта вода в виде осадков достигает земной поверхности.

Шестая гипотеза. Как установлено учеными, примерно 250 млн. лет назад на Земле был единый континент. Затем, неизвестно по каким причинам, он треснул, и части его начали расползаться, «уплывать» друг от друга.

Доказательствами существования некогда единого материка является не только подобие береговых линий, но также сходство флоры и фауны, сходство геологических структур побережий.

Исследования последних лет подтвердили: материки «плывут», расстояние между ними непрерывно увеличивается. Передвижение материков блестяще объясняет гипотеза расширяющейся Земли. Гипотеза утверждает: первоначально Земля имела радиус вдвое меньший, чем сейчас. Материки, слитые тогда воедино, опоясывали планету.

Океанов не существовало. И вот на границе протерозоя и мезозоя (250–300 млн. лет назад) Земля начала расширяться. Единый материк дал трещины, которые, наполнившись водой, превратились в океаны.

Однако по мере уплотнения пылевого облака происходило его гравитационное сжатие, и давление внутри прото-Земли возрастало. Соответственно росла и степень поглощения водорода металлами группы железа. Сжатие порождало антипод давления – разогрев. А так как наибольшему сжатию подвергались центральные области образовавшейся планеты, то там стремительнее росла и температура.

И вот на какой-то стадии разогрева, когда температура в ядре Земли достигла определенного критического значения (переход количественного роста в новое качественное состояние! ), начался обратный процесс – выделение водорода из металлов.

Таким образом, дегазация водорода сопровождалась расширением Земли. Между тем водород, пронизывая огромную толщу планеты, захватывал по пути атомы кислорода, и на поверхность ее вырывались уже пары воды. Конденсируясь, вода заполняла разломы в коре. Постепенно образовались океаны.

 


Круговороты веществ

Вода и ее круговорот. Воды земного шара находятся в постоянном взаимодействии и в процессе круговорота связаны воедино. Под влиянием солнечной радиации с поверхности океанов, морей, рек, озер, ледников, снежного покрова и льда, почвы и растительности происходит испарение воды. Испарение с поверхности океанов и морей – основной источник поступления влаги в атмосферу. Большая часть этой влаги выпадает в виде атмосферных осадков непосредственно на поверхность океанов и морей, совершая так называемый малый круговорот. Меньшая ее доля участвует в большом круговороте, вступая в сложные взаимодействия с земной поверхностью. Большой круговорот включает в себя ряд местных влагооборотов и представляет собой многообразный процесс перемещения, расходования и возобновления влаги на земной поверхности, в недрах земли и в атмосфере. Атмосферные осадки, орошая поверхность материков, частично просачиваются в почву, частично стекают по склонам и образуют ручьи, реки, озера, болота. Поглощенная почвой вода частью испаряется непосредственно или транспирируется растениями, частью просачивается вглубь и формирует подземные воды. Последние участвуют в питании рек, озер или достигают моря подземными путями.

Влага, поступившая в атмосферу в результате испарения с поверхности суши и ее водоемов, дополняет то количество ее, которое поступает с океана. Воздушными течениями она переносится вглубь материка и, выпадая в виде дождя и снега, орошает территории, более или менее удаленные от океана. Выпавшие осадки вновь испаряются, просачиваются, стекают по земной поверхности. Сток воды рек, впадающих в океан, завершает большой круговорот воды на земном шаре. Упрощенная схема представлена на рис. 2.3. В действительности явление круговорота значительно сложнее.

Круговорот воды состоит из нескольких звеньев, главные из которых атмосферное, океаническое, материковое. В атмосферном звене происходит перенос влаги в процессе атмосферной циркуляции и образование атмосферных осадков. Единовременный запас влаги в атмосфере невелик, всего 14 тыс. км3,. но при постоянном возобновлении этой влаги в процессе испарения с поверхности Земли объем осадков, выпадающих на эту поверхность, равен 525 тыс. км3. Таким образом, в среднем каждые 10 суток влага атмосферы возобновляется.

Для океанического звена круговорота характерно непрерывное восстановление запасов влаги в атмосфере путем испарения. С поверхности океанов в атмосферу поступает 86, 0 % общего количества испарившейся влаги на земном шаре.

 

Рис. 2.3. Схема круговорота воды (по М.И. Львовичу). 1 – осадки, 2 – водопроницаемые породы, 3 – слабопроницаемые породы, 4 – непроницаемые породы, 5– источник, 6 – направление движения воды и водяных паров

 

Материковое звено по активности участия его вод в круговороте отличается большим разнообразием. В этом звене М. И. Львович в свою очередь выделяет почвенное, литогенное, речное, озерное, ледниковое и биологическое звенья.

Почва осуществляет обмен влагой как с атмосферой, реками и озерами, так и с недрами земли – литогенным звеном. Обмен этот происходит путем просачивания, стекания по поверхности, испарения и транспирации сравнительно быстро, в пределах одного года.

Степень подвижности воды в литогенном звене неодинакова. Наиболее активно участвуют в общем круговороте воды подземные воды, залегающие вблизи земной поверхности до уровня дренирования их речной сетью и питающие реки. Продолжительность их обмена – от месяца до нескольких лет. С удалением от земной поверхности, на больших глубинах, подземные воды становятся менее подвижны.

Реки возвращают в океан воды, которые поступили в процессе круговорота на сушу. Обмен воды, содержащейся в руслах рек, происходит весьма быстро: в среднем, по данным разных авторов, за 12–25 суток. Но если к объему русловых вод прибавить объем проточных озер, то активность водообмена значительно уменьшится и его продолжительность возрастет до трех лет.

В ледниках как бы законсервированы большие массы воды в виде льда. Движение льда медленное, поэтому продолжительность обмена воды (льда) в ледниках колеблется, по разным данным, от 8300 до 15 000 лет.

Анализ активности водообмена раскрывает весьма интересную и важную черту ресурсов пресных вод – их относительно быстрое возобновление.

Таким образом, круговорот воды в природе, совершающийся под влиянием солнечного тепла и силы тяжести, объединяет несколько геофизических процессов, происходящих в его звеньях, – это испарение, перенос влаги в атмосфере, ее конденсация и выпадение осадков, просачивание их в почву и горные породы, сток поверхностных и подземных вод.

Особую роль в круговороте воды занимают биологические процессы – транспирация и фотосинтез. В среднем расход воды на транспирацию приблизительно равен 30 000 км3 в год (по Львовичу). Эта величина превышает 40 % суммарного испарения со всей суши и составляет 7 % испарения с поверхности земного шара, включая океан.

Воды, стекающие по земной поверхности, не все попадают в океаны и моря. Ниспадающие к океанам покатости, сток с которых направлен в океан, называются сточными или периферийными областями стока. Замкнутые пространства, не имеющие связи с океанами, сток с которых не достигает океана, называются областями внутреннего стока или бессточными (по отношению к океану). Воды этих областей расходуются на испарение либо по пути стока, либо с поверхности конечных замкнутых водоемов, куда они стекают. Области внутреннего стока обмениваются влагой с периферийными областями только путем переноса ее воздушными течениями в атмосфере или в незначительной мере подземными путями.

Общая площадь периферийных областей земного шара составляет 117 млн. км2 и почти в 4 раза превосходит площадь областей внутреннего стока, равную 32 млн. км2. Большая периферийная область в нашей стране – ниспадающая к Арктическим морям, с которой собирают свои воды реки Сибири: Обь, Енисей, Лена, Яна, Индигирка, Колыма и др. Огромные периферийные области направлены к Атлантическому океану, с них стекают большие реки мира: Амазонка, Миссисипи, Нигер, Конго, и многие реки Европы: Нева, Западная Двина, Висла, Одра, Эльба, Рейн, Луара и др.

Большая область внутреннего стока – Арало-Каспийская, К ней принадлежат бассейны рек Волги, Урала, Куры, Сырдарьи, Амударьи и др. К бессточным же областям относятся пустыни Сахара, Аравийская и Центрально-Австралийская.

Естественные циклы основных биогенных веществ. Для обеспечения жизнедеятельности растений и животных требуются различные химические элементы, но только некоторые из них имеют преобладающее значение. Основа жизни – белки, углеводы и жиры складываются из шести основных элементов: водорода, углерода, азота, кислорода, фосфора и серы. Кроме фосфора они все образуют растворимые и летучие соединения и таким образом участвуют в повторном цикле воды.

В процессе фотосинтеза зеленые растения и водоросли на свету выделяют кислород, причем не из углекислого газа, как это считалось раньше, а из воды.

В первичной атмосфере Земли было мало или совсем не было кислорода, поэтому первые организмы были анаэробными. Накопление кислорода началось в докембрии. Сейчас запасы свободного кислорода оцениваются приблизительно в 1, 6*1015 т.

Кислород является самым распространенным элементом на Земле. В гидросфере его содержится 85, 82 % по массе, в литосфере 47 %, в атмосфере 23, 15 %. Кислород стоит на первом месте по числу образуемых им минералов (1364). Среди них преобладают силикаты, кварц, окислы железа, карбонаты и сульфаты. В живых организмах содержится в среднем около 70 % кислорода. Он входит в состав большинства органических соединений (белков, жиров, углеводов и т.д.) и в состав органических соединений скелета.

Свободный кислород играет большую роль в биохимических и физиологических процессах, особенно в аэробном дыхании.

В области свободного кислорода формируются резко окислительные условия, в отличие от сред, в которых кислород отсутствует (в магме, глубоких горизонтах подземных вод, илах морей и озер, в болотах), где образуется восстановительная обстановка.

Огромное значение для атмосферы имеет также двуокись углерода. Его содержание в атмосфере до промышленной революции, в 1800 г составляло 0, 029 %, а в настоящее время ее содержание превысило 0, 033 %. В океане этого газа растворено в 50 раз больше.

Углерод в больших количествах содержится в земной коре, прежде всего в карбонатных породах – 9, 6*1015 т и горючих ископаемых (угли, нефть, сланцы, битумы, газы, торф). Разведанные запасы горючих ископаемых по углероду оцениваются в 1013 т.

Синтезированные растениями углеводы (глюкоза, сахароза, крахмал и другие) являются главным источником энергии для большинства гетеротрофных организмов.

Воздух по объему почти на 80 % состоит из молекулярного азота N2 и представляет собой крупнейший резервуар этого элемента. Естественный цикл азота является более сложным, чем углерода. Большинство биологических форм не могут усваивать газообразный азот. Поэтому сначала происходит фиксация азота – превращение N2 в неорганические и органические соединения, которые происходят как физико-химическим, так и биологическим путем. Основными фиксаторами азота являются бактерии, грибки и водоросли (прежде всего синезеленые).

В процессе цикла продуцент – консумент – редуцент нитраты становятся составной частью белков, нуклеиновых кислот и других компонентов. Погибшие организмы являются объектом деятельности редуцентов – бактерий и грибов, при этом они азот превращают в аммиак. И далее в нитрит и обратно газообразный азот (рис 2.4).

 

 

Рис. 2.4. Круговорот азота


Фосфор, необходимый животным и растениям для построения белков протоплазмы, поступает в круговорот за счет эрозии фосфатных пород и гуано, минерализации продуктов жизнедеятельности и органических остатков. Фосфаты потребляются растениями. Не образующий летучих соединений фосфор имеет тенденцию накапливаться в море. Вынос фосфора из моря на сушу осуществляется в основном с рыбой и с пометом морских птиц (рис 2.5).

 

Рис. 2.5. Круговорот фосфора (по П. Дювиньо и М. Тангу)

 

Сера относится к весьма распространенным химическим элементам, которые встречаются в свободном состоянии – самородная сера и в виде соединений – сульфидов, полисульфидов и сульфатов. Известно более 150 минералов серы, среди которых доминируют сульфаты. В природе широко распространены процессы окисления сульфидов до сульфатов, которые обратно восстанавливаются до H2S и сульфидов. Эти реакции происходят при активном участии микроорганизмов, прежде всего десульфирующих бактерий и серобактерий.

В виде органических и неорганических соединений сера постоянно присутствует во всех живых организмах и является важным биогенным элементом, она входит в состав широко распространенных соединений: аминокислот, коферментов, витаминов.

Организмы в основном состоят из вышеперечисленных элементов, однако они не смогут жить, если не будут содержать в достаточных количествах некоторые катионы: калий, кальций, магний и натрий, которые относятся к группе макроэлементов, потому что их содержание выражается в сотых долях сухого вещества. Некоторые вещества нужны организмам в очень маленьких количествах, к ним, например, относятся железо, бор, цинк, медь, марганец, молибден и анион хлора. Микроэлементы выражаются в миллионных долях сухого вещества. В пищевую цепь они поступают в основном через круговорот воды. Они обладают высокой биологической активностью и участвуют во всех процессах жизнедеятельности: белковом, жировом, углеводном, витаминном, минеральном обмене, газо- и теплообмене, тканевой проницаемости, клеточном делении, образовании костного скелета, кроветворении, росте, размножении, иммунобиологических реакциях.

Циклы некоторых токсичных элементов. Второстепенные для живых организмов химические элементы, также как и жизненно важные, мигрируют между организмами и средой. В естественных экологических системах они содержатся в таких концентрациях и формах, что не оказывают отрицательного влияния на организмы. В настоящее время стала весьма острой проблема токсичных веществ.

Ртуть, также как и другие тяжелые металлы, почти не влиял на организмы до наступления индустриальной эры, потому что ее концентрации в природе были невелики, а она сама химически малоподвижна. Разработка месторождений и промышленное использование ртути (в электротехническом оборудовании, термометрах, красках и фунгицидах) увеличили ее поток в экосистемы. Чистый элемент не токсичен. Превращение в токсичные органические соединения ртути, такие как метилртуть и этилртуть, происходит благодаря бактериям, присутствующим в детритах и осадках. Эти соединения легко растворимы, подвижны и очень ядовиты. Химической основой агрессивного действия ртути является ее сродство с серой, в частности с сероводородной группой в белках. Эти молекулы связываются с хромосомами и клетками головного мозга. Рыбы и моллюски могут накапливать их до концентраций опасных для человека, употребляющего их в пищу, вызывая болезнь Минамата.

Кадмий представляет собой один из самых опасных токсикантов среды, он значительнее токсичнее свинца. В последние 30–40 лет он находит все большее техническое применение. Его попадание в пищевые цепи связано с его промышленными выбросами в воздух и воду. Кадмий имеет свойство накапливаться в организмах животных и растений. Отравление кадмием получило название кадмиоз или Болезнь Итай-итай (в переводе с японского «больно»).

Стронций-90 и цезий-137 – продукты деления атома, имеющие большой период полураспада. Эти ранее малоизученные элементы теперь являются объектами пристального внимания в связи с их большой опасностью для человека и животных. Они попадают в окружающую среду при производстве и использовании различных источников ядерной энергии. Эти вещества активно циркулируют по пищевым цепям и накапливаются в тканях животных и растений. Это связано с тем, что стронций по свойствам похож на кальций, а цезий – на калий. Стронций может оказывать также канцерогенное действие.

Дихлордифенилтрихлорэтан или просто ДДТ– пестицид (пестис – зараза, циде – убиваю, лат.), использовавшийся, а местами используемый до сих пор в сельском хозяйстве для борьбы с насекомыми. В свое время его открытие было отмечено Нобелевской премией. Он малорастворим и никогда не поступает в верхние слои атмосферы и при этом встречается повсюду. Его обнаруживают в тканях пингвинов Антарктиды. Он в основном мигрирует по пищевым цепям, при этом в конце пищевого цикла его концентрация может увеличиться в 1000 раз. Сейчас его использование запрещено.

Диоксины – это группа веществ, в которую входят сотни видов хлор–, бром- и хлорброморганических циклических эфиров. Диоксины образуются во многих технологических процессах различных производств, включая сжигание отходов, биологическую очистку сточной воды и сгорание топлива в двигателях. Эти вещества превосходят по своей токсичности соединения тяжелых металлов.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 1140; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь