Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы обнаружения ионизирующих излучений



Обнаружение ионизирующих излучений основывается на их способности ионизировать и возбуждать атомы и молекулы среды, в которой они распространяются. Такие процессы изменяют физико-химические свойства облучаемой среды, которые могут быть обнаружены и измерены.

К таким изменениям среды относятся:

  • изменение электропроводности веществ (газов, жидкостей, твердых материалов);
  • люминесценция (свечение) некоторых веществ;
  • засвечивание фотопленок;
  • изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.

Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют фотографический, химический, сцинтилляционный и ионизационный методы.

Фотографический метод

Фотографический метод основан на измерении степени почернения фотоэмульсии под воздействием радиоактивных излучений. Гамма-лучи, воздействуя на молекулы бромистого серебра, содержащегося в фотоэмульсии, выбивают из них электроны связи. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении.

Сравнивая почернение пленки с эталоном, можно определить полученную пленкой дозу облучения, так как интенсивность почернения пропорциональна дозе облучения.

Химический метод

Химический метод основан на определении изменений цвета некоторых химических веществ под воздействием радиоактивных излучений. Так, например, хлороформ при облучении распадается с образованием соляной кислоты, которая, накопившись в определенном количестве, воздействует на индикатор, добавленный к хлороформу. Интенсивность окрашивания индикатора зависит от количества соляной кислоты, образовавшейся под воздействием радиоактивного излучения, а количество образовавшейся соляной кислоты пропорционально дозе радиоактивного облучения. Сравнивая окраску раствора с имеющимися эталонами, можно определить дозу радиоактивных излучений, воздействовавших на раствор. На этом методе основан принцип работы химического дозиметра ДП-70 МП.

Сцинтилляционный метод

Сцинтилляционный метод основан на том, что под воздействием радиоактивных излучений некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) испускают фотоны видимого света. Возникшие при этом вспышки света (сцинтилляции) могут быть зарегистрированы. Количество вспышек пропорционально интенсивности излучения.

Ионизационный метод

Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация газов. При этом нейтральные молекулы и атомы газа разделяются на пары: положительные ионы и электроны. Если в облучаемом объеме создать электрическое поле, то под воздействием сил электрического поля электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы - к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность, а следовательно, и ионизирующая способность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений. Данный метод является основным, и его используют почти во всех дозиметрических приборах.

Единицы измерения радиоактивности и ионизирующих излучений

Единицы радиоактивности

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - " один распад в секунду" (расп/с). В системе СИ эта единица получила название " беккерель" (Бк). В практике радиационного контроля широко используется внесистемная единица активности - " кюри" (Ки). Один кюри - это 3, 7х1010 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы.

Единицы ионизирующих излучений

Для измерения величин, характеризующих ионизирующее излучение, исторически появилась единица " рентген". Эта единица определяется как доза рентгеновского или гамма-излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, не-сущие заряд в 1 эл.-ст. ед. ионов каждого знака здесь 0, 001293 г? масса 1 см3 атмосферного воздуха при 0 оС и давлении 760 мм рт. ст.).

Экспозиционная доза - мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.

В СИ единицей экспозиционной дозы является " один кулон на килограмм" (Кл/кг). Внесистемной единицей является " рентген" (Р), 1 Р = 2, 58х10-4 Кл/кг. В свою очередь 1 Кл/кг = 3, 88х103 Р.

Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - " ампер на килограмм" (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей " рентген в секунду" (Р/с) или " рентген в час" (Р/ч).

Поглощенная доза - энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица " грей" (Гр). 1 грей - это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.

Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.

Мощность поглощенной дозы - это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ - " грей в секунду" (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 св веществе создается доза облучения 1 Гр.

На практике для оценки поглощенной дозы широко используют внесистемную единицу мощности поглощенной дозы " рад в час" (рад/ч) или " рад в секунду" (рад/с).

Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q. Д, где Д - поглощенная доза данного вида излучения; Q - коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета-излучений 1, для нейтронов с энергией от 0, 1 до 10, для альфа - излучения с энергией менее 10 Мэв 20. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект.

В системе СИ эквивалентная доза измеряется в " зивертах" (Зв).

Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы. Бэр - такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества гамма-излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.

Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за единицу времени и выражается в " зивертах в секунду" (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в " микрозивертах в час" (мкЗв/ч).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1, 5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0, 5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. В таблице 3 приведены дозиметрические величины и единицы их измерения.


Поделиться:



Популярное:

  1. Автоматизированная система мониторинга вычислительной среды и обнаружения сетевых атак.
  2. Биологическое действие ионизирующих излучений
  3. Вероятность обнаружения геометрических тел.
  4. Время с момента обнаружения водителем опасности до начала принятия мер по ее избежанию.
  5. Гигиеническое нормирование электромагнитных излучений
  6. Единицы измерения параметров ионизирующих излучений и радиоактивности
  7. Защита от вредного воздействия электромагнитных полей и ионизирующих излучений.
  8. Классификация источников излучения и понятие ионизирующего излучения. Влияние ионизирующих излучений на окружающую среду и защита от них.
  9. Классы условий труда при действии электромагнитных полей и излучений
  10. Коллективная доза. Способы обнаружения ионизирующих излучений.
  11. ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИЗУЧЕНИЯ ПРИНЦИПОВ РАБОТЫ СИСТЕМЫ ОБНАРУЖЕНИЯ ВТОРЖЕНИЙ. СИГНАТУРНЫЕ МЕТОДЫ АНАЛИЗА
  12. Магнитометрические средства обнаружения


Последнее изменение этой страницы: 2016-06-04; Просмотров: 641; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь