Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электропроводность примесных полупроводниковСтр 1 из 10Следующая ⇒
Химически чистые полупроводники используют в полупроводниковой технике в основном в качестве исходного материала, на базе которого получают примесные полупроводники. За счет введения примеси можно значительно улучшить электропроводность полупроводника, создав в нем существенное преобладание одного какого-либо типа подвижных носителей заряда – дырок или электронов. В зависимости от валентности атомов примеси получают полупроводники с преобладанием либо электронной, либо дырочной электропроводности. Сочетание областей с разным типом электропроводности позволяет придать полупроводниковым приборам различные свойства. Примесь вводится в очень малом количестве: один атом примеси на 106 – 108 атомов исходного полупроводника. При этом атомная кристаллическая решетка не нарушается. При введении в четырехвалентный полупроводник, например кристалл кремния или германия, примеси пятивалентного химического элемента (мышьяка, сурьмы, фосфора) атомы примеси замещают атомы исходного вещества в некоторых узлах кристаллической решетки (рис. 1.6, а). Четыре валентных электрона атома примеси создают ковалентные связи с четырьмя соседними атомами исходного полупроводника, а пятый электрон, не занятый в связи, оказывается избыточным и легко отрывается от атома. На его отрыв требуется затратить существенно меньшую энергию, чем на разрыв ковалентной связи, так что уже при комнатной температуре избыточные электроны атомов примеси становятся свободными. Атом примеси, потерявший один электрон, превращается в неподвижный положительный ион, связанный в узле кристаллической решетки, т.е. происходит ионизация атомов примеси. Положительный заряд иона примеси компенсируется отрицательным зарядом свободного электрона, и слой полупроводника с примесью остается электрически нейтральным, если свободный электрон не уходит из этого слоя. В случае ухода электрона в другие слои полупроводникового кристалла неподвижные заряды ионов примеси образуют нескомпенсированный положительный объемный заряд. Примесь, атомы которой отдают электроны, называют донорной, При введении донорной примеси концентрация электронов в кристалле резко возрастает. Она определяется в основном концентрацией атомов примеси. Одновременно происходит генерация пар «электрон – дырка», но количество электронов, возникающих при этом, значительно меньше, чем количество электронов, отдаваемых донорами. Поэтому концентрация электронов становится значительно выше концентрации дырок: nn > > pn. Поскольку содержание примесей невелико, атомы примеси можно рассматривать, как отдельные, не взаимодействующие друг с другом. Тогда их энергетические уровни соответствуют уровням отдельного атома и не расщепляются в кристалле на зоны. Такие местные уровни называют локальными. На энергетической диаграмме полупроводника n-типа (рис. 1.6, б) введение донорной примеси отражается появлением в запрещенной зоне вблизи зоны проводимости близко друг от друга расположенных локальных уровней энергии, занятых избыточными валентными электронами атомов доноров при температуре абсолютного нуля. Число этих локальных уровней энергии равно числу атомов примеси в кристалле. На рисунке эти уровни показаны штрихами. Ширина зоны ∆ Wд равна разности между энергией нижнего уровня зоны проводимости и локального валентного уровня донора в запрещенной зоне. Она очень мала и составляет 0, 01 – 0, 07 эВ в зависимости от выбранного полупроводника и материала примеси. Этим объясняется то, что при комнатной температуре почти все электроны с локальных донорных уровней переходят в зону проводимости и могут участвовать в создании электрического тока. При введении в кристалл кремния или германия примеси трехвалентного химического элемента (например, индия, алюминия, бора или галлия) атом примеси, войдя в узел кристаллической решетки, образует своими тремя валентными электронами только три ковалентные связи с соседними атомами четырехвалентного полупроводника (рис. 1.7, а).Для четвертой связи у него не хватает одного электрона; она оказывается незаполненной, т.е. создается дырка. Для заполнения этой связи атом примеси может захватить электрон из ковалёнтной связи соседнего атома, так как требуемая для перехода электрона энергия в этом случае невелика. В результате присоединения лишнего валентного электрона атом примеси превращается в неподвижный отрицательный ион, а в соседней ковалентной связи, откуда этот электрон ушел, появляется дырка. Положительный заряд дырки компенсирует отрицательный заряд иона примеси, и слой кристалла остается электрически нейтральным. В случае прихода в данный слой электрона из другого слоя и рекомбинации его с дыркой неподвижные заряды ионов примеси создают нескомпенсированный отрицательный объемный заряд. Примесь, атомы которой захватывают электроны соседних атомов, называют акцепторной.Введение акцепторной примеси приводит к образованию избыточного числа дырок, концентрация которых значительно превышает концентрацию электронов, возникающих вследствие разрушения ковалентных связей полупроводника: В электрическом токе, возникающем в таком полупроводнике, преобладает дырочная составляющая. Полупроводник с преобладанием дырочной электропроводности называют полупроводником р-типа. В таком полупроводнике дырки являются основными носителями заряда, а электроны – неосновными носителями заряда. Энергетическая диаграмма полупроводника р-типа представлена на рис. 1.7, б. Локальные уровни энергии атомов акцепторной примеси (показаны штрихами) расположены в запрещенной зоне вблизи валентной зоны исходного полупроводника. Все эти уровни свободны при температуре абсолютного нуля, а число их соответствует количеству атомов примеси в кристалле. Величина энергии ∆ Wд равна разности между энергией акцепторного уровня и верхнего уровня валентной зоны. Она, как и величина ∆ Wддля полупроводников n-типа, мала и составляет 0, 01 – 0, 07 эВ в зависимости от материала исходного полупроводника и примеси. Поэтому при комнатной температуре все акцепторные уровни энергии оказываются занятыми электронами, которые переходят на них из валентной зоны. В результате в валентной зоне появляется большое количество вакантных уровней – дырок. Таким образом, в примесных полупроводниках основные носители заряда появляются главным образом за счет атомов примеси, а неосновные – за счет разрушения ковалентных связей и вызванной этим генерации пар носителей заряда. Концентрация основных носителей заряда превышает на два-три порядка концентрацию неосновных носителей. При этом удельная электрическая проводимость примесного полупроводника превышает удельную проводимость собственного полупроводника в сотни тысяч раз. Кроме кремния и германия в качестве исходных полупроводниковых материалов в промышленности применяют арсенид галлия, селен, оксиды, карбиды и другие химические соединения элементов III и V групп, а также II и VI групп периодической системы Менделеева. 1.4. Дрейфовый и диффузионный токи Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия). Если электрическое поле отсутствует, и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет. Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле. Движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси. Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток – дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок. Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля: ν = μ E Коэффициент пропорциональности m называют подвижностью электронов (mn), или дырок (mp). Свободные электроны движутся в пространстве между узлами кристаллической решетки, а дырки – по ковалентным связям, поэтому средняя скорость, а следовательно, и подвижность электронов больше, чем дырок. У кремния подвижность носителей заряда меньше, чем у германия. В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами. При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т.е. движутся в направлении уменьшения их концентрации. Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным. Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т.е. чем резче она изменяется, тем больше диффузионный ток. Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД 2.1. Электронно-дырочный переход при отсутствии Электронно-дырочный переход, или сокращенно p-n-переход, – это тонкий переходный слой в полупроводниковом материале на границе между двумя областями с различными типами электропроводности (одна – n-типа, другая – р-типа). Электронно-дырочный переход благодаря своим особым свойствам является основным элементом многих полупроводниковых приборов и интегральных микросхем. Наряду с p-n-переходами в полупроводниковой технике используются и другие виды электрических переходов, например металл-полупроводник, а также переходы между двумя областями полупроводника одного типа, отличающимися концентрацией примесей, а значит, и значениями удельной проводимости: электронно-электронный (n-n+-переход) и дырочно-дырочный (р-р+-переход). Знак «плюс» относится к слою с большей концентрацией основных носителей заряда. Электронно-дырочный переход получают в едином кристалле полупроводника, вводя в одну область донорную примесь, а в другую – акцепторную. Атомы примесей при комнатной температуре оказываются полностью ионизированными. При этом атомы акцепторов, присоединив к себе электроны, создают дырки (получается p-область), а атомы доноров отдают электроны, становящиеся свободными (создается n-область) (рис. 2.1, а). pp = nn, где pp– концентрация дырок в р-области; nn– концентрация электронов в n-области. Такой p-n-переход называют симметричным В каждой области кроме основных носителей заряда имеются неосновные носители, концентрация, которых значительно меньше, чем основных: pn < < nn и np < < pp, где pn – концентрация дырок в n-области; np – концентрация электронов в р-области. Из распределения концентраций основных и неосновных носителей заряда в двухслойной структуре (рис. 2.1, 6) видно, что на границе двух областей возникает разность концентраций одноименных носителей заряда. Одни и те же носители заряда в одной области являются основными, а в другой – неосновными, так что дырок в р-области гораздо больше, чем в n-области, и наоборот, электронов в n-области значительно больше, чем в р-области. Разность концентраций приводит к диффузии основных носителей заряда через границу между двумя областями. Дырки диффундируют из р-области в n-область, а электроны – из n-области в р-область. Попадая в n-область, дырки рекомбинируют с электронами, и по мере продвижения дырок вглубь их концентрация уменьшается. Аналогично электроны, углубляясь в р-область, постепенно рекомбинируют там с дырками, и концентрация электронов уменьшается. Диффузия основных носителей заряда через границу раздела p-и n-областей создает ток диффузии в p-n-переходе, равный сумме электронного и дырочного токов: Iдиф = Ip диф + In диф. Направление диффузионного тока совпадает с направлением диффузии дырок. Уход основных носителей заряда из слоев вблизи границы в соседнюю область оставляет в этих слоях нескомпенсированный неподвижный объемный заряд ионизированных атомов примеси: · уход электронов – положительный заряд ионов доноров в n-области; · уход дырок – отрицательный заряд ионов акцепторов в р-области (рис. 2.1, а, в). Эти неподвижные заряды увеличиваются еще и за счет рекомбинации основных носителей заряда с пришедшими из соседней области носителями заряда противоположного знака. В результате образования по обе стороны границы между р-и n-областями неподвижных зарядов противоположных знаков в p-n-переходе создается внутреннее электрическое поле, направленное от n-области к р-области. Это поле препятствует дальнейшей диффузии основных носителей заряда через границу, являясь для них так называемым потенциальнымбарьером. Его действие определяется высотой потенциального барьера (j), измеряемой в электрон-вольтах (рис. 2.1, г). В результате появления потенциального барьера диффузионный ток уменьшается. Преодоление потенциального барьера возможно только для основных носителей, обладающих достаточно большой энергией. Слой, образованный участками по обе стороны границы, где «выступили» неподвижные заряды противоположных знаков, является переходным слоем и представляет собой собственно p-n-переход. Из него уходят подвижные носители заряда, называют обедненным слоем или областью пространственного заряда (ОПЗ). Он обладает большим удельным сопротивлением. Потенциальный барьер, уменьшая диффузию основных носителей заряда, в то же время способствует переходу через границу неосновных носителей. Совершая тепловое хаотическое движение, неосновные носители заряда попадают в зону действия электрического поля и переносятся им через p-n-переход. Движение неосновных носителей заряда под действием внутреннего электрического поля создает в p-n-переходе дрейфовый ток, равный сумме электронной и дырочной составляющих: Iдр = Iрдр + Inдр. Ток, созданный неосновными носителями заряда, очень мал, так как их количество невелико. Этот ток носит название теплового тока (Iт), поскольку количество неосновных носителей заряда зависит от собственной электропроводности полупроводника, т.е. от разрушения ковалентных связей под действием тепловой энергии. Направление дрейфового тока противоположно диффузионному. При отсутствии внешнего напряжения устанавливается динамическое равновесие, при котором уменьшающийся диффузионный ток становится равным дрейфовому: Iдиф = Iдр, т.е. ток через p-n-переход равен нулю. Это соответствует определенной высоте потенциального барьера j0. Установившаяся высота потенциального барьера (j0) в электрон-вольтах численно равна контактной разности потенциалов (Uк) в вольтах, создаваемой между нескомпенсированными неподвижными зарядами противоположных знаков по обе стороны границы: j0 = Uк. Величина j0 зависит от температуры и материала полупроводника, а также от концентрации примеси. С повышением температуры высота потенциального барьера уменьшается, с увеличением концентрации примеси и ширины запрещенной зоны потенциальный барьер возрастает. В состоянии равновесия p-n переход характеризуется также шириной (l0). Рассмотренный симметричный p-n-переход имеет одинаковую ширину частей запирающего слоя по обе стороны границы раздела. На практике чаще встречаются структуры с неодинаковой концентрацией донорной и акцепторной примесей. В этом случае p-n-переход называют несимметричным. В несимметричном p-n-переходе концентрация примеси в одной из областей на два-три порядка больше, чем в другой. В области с малой концентрацией примеси ширина части запирающего слоя соответственно на два-три, порядка больше, чем в области с высокой концентрацией примеси. 2.2. Электронно-дырочный переход При подаче на p-n-переход внешнего напряжения процессы зависят от его полярности. Внешнее напряжение, подключенное плюсом к р-области (рис. 2.2, а), а минусом к n-области, называют прямым напряжением(Uпр). Напряжение Uпр почти полностью падает на p-n-переходе, так как его сопротивление во много раз превышает сопротивление р- и n-областей. Полярность внешнего напряжения (Unр)противоположна полярности контактной разности потенциалов (Uк), поэтому электрическое поле, созданное на p-n-переходе внешним напряжением направлено навстречу внутреннему электрическому полю. В результате этого потенциальный барьер понижается и становится численно равным разности между напряжениями, действующими на p-n-переходе (рис. 2.2, б): j = Uк – Unр. Вследствие разности концентраций дырок в р- и n-областях, а электронов в n- и p-областях основные носители заряда диффундируют через p-n-переход, чему способствует снижение потенциального барьера. Через p-n-переход начинает проходить диффузионный ток. Одновременно с этим основные носители заряда в обеих областях движутся к p-n-переходу, обогащая его подвижными носителями и уменьшая, таким образом, ширину (l)обедненного слоя. Это приводит к снижению сопротивления p-n-перехода и возрастанию диффузионного тока. Однако пока Unр < Uк, еще существует потенциальный барьер. Обедненный носителями заряда слой p-n-перехода имеет большое сопротивление, ток в цепи имеет малую величину. При увеличении внешнего прямого напряжения до Uк = Unр потенциальный барьер исчезает, ширина обедненного слоя стремится к нулю. Дальнейшее увеличение внешнего напряжения при отсутствии слоя p-n-перехода, обедненного носителями заряда, приводит к свободной диффузии основных носителей заряда из своей области в область с противоположным типом электропроводности. В результате этого через p-n-переход по цепи потечет сравнительно большой ток, называемый прямым током (Iпр), который с увеличением прямого напряжения растет. Введение носителей заряда через электронно-дырочный переход из области, где они являются основными, в область, где они являются неосновными, за счет снижения потенциального барьера называют инжекцией. В симметричном p-n-переходе инжекции дырок из р-области в n-область и электронов из n-области в р-область по интенсивности одинаковы. Инжектированные в n-область дырки и в р-область электроны имеют вблизи границы большую концентрацию, уменьшающуюся по мере удаления от границы в глубь соответствующей области из-за рекомбинаций. Большое количество неосновных носителей заряда у границы компенсируется основными носителями заряда, которые поступают из глубины области; например, инжектированные в n-область дырки компенсируются электронами. В результате этой компенсации объемных зарядов, создаваемых у p-n перехода инжектированными неосновными носителями, полупроводник становится электрически нейтральным. Движение основных носителей заряда через p-n-переход создает электрический ток во внешней цепи. Уход электронов из n-области к p-n-переходу и далее в р-область и исчезновение их в результате рекомбинации восполняется электронами, которые поступают из внешней цепи от минуса источника питания. Соответственно, убыль дырок в р-области, ушедших к p-n-переходу и исчезнувших при рекомбинации, пополняется за счет ухода электронов из ковалентных связей во внешнюю цепь к плюсу источника питания. Неосновные носители заряда, оказавшиеся в результате инжекции в области с противоположным типом электропроводности, например дырки, инжектированные из р-области в n-область, продолжают движение от границы вглубь. Это движение происходит по причине как диффузии, так и дрейфа, поскольку имеется и градиент их концентрации, и электрическое поле в полупроводнике, созданное внешним напряжением. Диффузия преобладает вблизи p-n-перехода, а дрейф – вдали от него, внутри соответствующей области. На определенном расстоянии от p-n-перехода концентрация инжектированных неосновных носителей заряда убывает до нуля вследствие рекомбинации. В итоге концентрация неосновных носителей остается такой, какой была в равновесном состоянии при отсутствии внешнего напряжения, т.е. обусловленной собственной электропроводностью полупроводника. Дрейф неосновных носителей заряда в сторону от p-n-перехода внутрь области создает тепловой ток (Iт). Тепловой ток на несколько порядков меньше диффузионного тока основных носителей заряда, т.е. прямого тока (Iпр), и имеет противоположное ему направление. Прямой ток создается встречным движением дырок и электронов через p-n-переход, но направление его соответствует направлению движения положительных носителей заряда – дырок. Во внешней цепи прямой ток протекает от плюса источника прямого напряжения через полупроводниковый кристалл к минусу источника. Мы рассмотрели процессы в симметричном p-n-переходе. В используемых на практике несимметричных p-n-переходах, имеющих неодинаковые концентрации акцепторов и доноров, инжекция носит односторонний характер. Например, если концентрация дырок в p-области на несколько порядков превышает концентрацию электронов в n-области (pp > > nn), то диффузия дырок в n-область будет несоизмеримо больше диффузии электронов в р-область. В этом случае можно говорить об односторонней инжекции дырок в n-область, а диффузионный ток через p-n-переход считать дырочным, пренебрегая его электронной составляющей. Таким образом, в несимметричном p-n-переходе носители заряда инжектируются из низкоомной области в высокоомную, для которой они являются неосновными. При несимметричном p-n-переходе область полупроводника с малым удельным сопротивлением (большой концентрацией примеси), из которой происходит инжекция, называют эмиттером, а область, в которую инжектируются неосновные для нее носители заряда, – базой. Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 1151; Нарушение авторского права страницы