![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Иерархия.Асимптотическая аппроксимация.
28.Формула суммирования Эйлера-Маклорена. формула суммирования, связывающая частные суммы ряда с интегралом и производными его общего члена:
Графы, ориентированные графы, псевдографы, мультиграфы. Графом G(V, E) называется совокупность двух множеств — непустого множества V (множества вершин) и множества Е двухэлементных подмножеств множества V (Е — множество рёбер). G(V, E) = (V; E), V^0, Е С 2V кVe G E |e| = 2. Если элементами множества Е являются упорядоченные пары (то есть Е с V х V), то граф называется ориентированным (или орграфом). В этом случае элементы множества V называются узлами, а элементы множества Е — дугами. Если элементом множества Е может быть пара одинаковых (не различных) элементов V, то такой элемент множества Е называется петлей, а граф называется графом с петлями (или псевдографом). Если Е является не множеством, а набором, содержащим несколько одинаковых элементов, то эти элементы называются кратными ребрами, а граф называется мультиграфом. 30. Изоморфизм и гомеоморфизм графов, двудольные графы. Говорят, что два графа G\1V1, Ei) и G2(V2, E2) изоморфны (обозначается G1 ~ G2), если существует биекция h: V1—► V2, сохраняющая смежность ei = (u, v) е Ех < => е2 = (h(u), h(v)) e E2. Пусть А = (-А, fi, П) и В = (В, П, П) — две однотипные алгебраические системы. Отображение h: А-± В называют гомоморфизмом алгебраической системы А в алгебраическую систему В, если выполняются следующие условия: 1) для любой п-арной операции ш ( все рёбра, соединяющие множества V\ и V2l то он называется полным двудольным графом.. Маршруты, пути. Маршрутом в графе называется чередующаяся последовательность вершин и рёбер vo, e1, v1, e2, v2,..., efc, Vfc, в которой любые два соседних элемента инцидентны. Если vo = Vk, то маршрут замкнут, иначе открыт. Если все рёбра различны, то маршрут называется цепью. Если все вершины (а значит, и рёбра) различны, то маршрут называется простой цепью. В цепи vo, ei,..., еk-1, Vk вершины vq и Vk называются концами цепи. Говорят, что цепь с концами u и v соединяет вершины u и v. Цепь, соединяющая вершины u и v, обозначается (u, v). Очевидно, что если есть цепь, соединяющая вершины u и v, то есть и простая цепь, соединяющая эти вершины. Замкнутая цепь называется циклом; замкнутая простая цепь называется простым циклом. Число циклов в графе G обозначается z(G). Граф без циклов называется ациклическим. Для орграфов цепь называется путем, а цикл — контуром. 32.Матричное задание графов. Предположим, что все вершины и все ребра неориентиронеориентированного графа или все вершины и все дуги (включая петли) ориентированного графа пронумерованы начиная с единицы. Граф (неориентированный или ориентированный) может быть представлен в виде матрицы типа nхm, где n — число вершин, a m — число ребер (или дуг). Для неориентированного графа элементы этой матрицы задаются следующим образом:
Более эффективной матричной структурой, представляющей граф, служит матрица смежности вершин, или булева матрица графа. Это квадратная матрица В порядка n, элементы которой определяют следующим образом: для неориентированного графа |
Последнее изменение этой страницы: 2016-09-01; Просмотров: 433; Нарушение авторского права страницы