Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЛЕКЦИЯ 8. Геодезические методы измерения перемещений
Классические геодезические методы. Под геодезическими методами понимают обычно совокупность приемов для измерения перемещений в исследуемых конструкциях с помощью геодезических приборов - теодолитов и нивелиров. Измерение вертикальных перемещений отдельных элементов сооружений производится на основе нивелирования - либо технического, либо высокоточного. Нивелирование во время испытания может производиться по маркам и реперам, установленным для длительных наблюдений за деформационным поведением обследуемых сооружений. При использовании нивелиров с приспособлением для оптического смещения линии визирования возможна оценка определенных перемещений сооружения с точностью до 0, 01мм. Измерение горизонтальных перемещений сооружений или отдельных элементов несущих и ограждающих конструкций производят на практике с использованием теодолитов. На практике теодолит центрируют под неподвижной точкой, выбранной на расстоянии 25...40м от сооружения в зависимости от его высоты. При этом на необходимых точках сооружения прикрепляют временные марки; при определении горизонтальных перемещений наиболее часто используются 2 способа. 1. Способ измерения углов при повторных наведениях теодолита на наблюдаемые марки. При этом, зная расстояние от теодолита до наблюдаемой марки и абсолютную величину приращения измеряемых горизонтальных углов, находят расчетным путем линейные горизонтальные перемещения наблюдаемых точек. 2. Способ так называемого «бокового» нивелирования, в котором при каждом отсчете рабочую трубу теодолита сначала наводят на наблюдаемую марку, а затем поворотом в вертикальной плоскости на 180 - на горизонтальную рейку с миллиметровой шкалой, закрепленной так, чтобы она заведомо всегда оставалась неподвижной во время испытаний. Разность последовательных отчетов, взятых по рейке, и дает искомое перемещение наблюдаемых точек в горизонтальном направлении. Однако на практике имеют место случаи отсутствия прямой видимости для наблюдаемых точек, что не позволяет широко использовать геодезические методы для глобальной оценки деформационного поведения обследуемого сооружения. Гидростатическое нивелирование . Гидростатическое нивелирование нашло широкое применение в геодезии и машиностроении при построении различных профилей местности и установке в проектное положение оборудования различных технологических линий.
Рис. 24. Схема измерения вертикальных перемещений сооружений с помощью системы гидростатического нивелирования: 1 - стеклянная трубка; 2 - рабочая шкала; 3 - гибкие шланги; 4 - уравнительный бак; 5 - измеряемые перемещения; 6 - базовая (нулевая) линия измерения
Этот способ основан на определении взаимного превышения проверяемых точек на уровне стояния жидкости в сообщающихся сосудах. Схема установки показана на рис.24. Чувствительность метода может быть значительно повышена установкой в трубках с внутренним диаметром порядка 5 см специальных микрометрических головок, оканчивающихся специальным коническим острием. При этом уровень жидкости в рассматриваемом случае определяется путем световой, либо звуковой сигнализации в момент касания острия головки поверхности жидкости. Рабочие отчеты берутся по шкале головки с точностью 0.01 мм. Отвесы. Применяют для определения взаимных горизонтальных смешений точек сооружения, расположенных на одной вертикали. Различают два типа отвесов: прямой и обратный. Конструктивная схема прямого отвеса показана на рис.25, а обратного отвеса - на рис.26.
Рис 25. Конструктивная схема прямого отвеса: 1 –исследуемое сооружение; 2 - марка с горизонтальной шкалой; 3 - отвес в сосуде с маслом; 4 - кронштейн для отвеса; 5 - линейная шкала; 6 - микроскоп; 7 –струна. Прямой отвес используют наиболее часто для определения горизонтальных смещений наземных частей зданий и сооружений, возникающих при неравномерных деформациях грунтовых оснований, а также от крановых горизонтальных нагрузок либо от копровых установок. Обратный отвес используют для выноса на дневную поверхность через вертикальную шахту положения рабочей марки заложенной, например, в основании гидротехнической плотины. Метод натянутой нити. Для точек, расположенных по прямой (в горизонтальном «створе»), перемещения, перпендикулярные перемещению створа, могут измеряться с помощью натянутой проволоки. Это целесообразно при отсутствии прямой видимости или при большой длине створа, т.е. в случаях, требующих переноса оптических геодезических инструментов на промежуточные марки, что на практике снижает точность получаемых результатов. На рис.27 показана конструктивная схема метода натянутой нити. Горизонтальные перемещения, перпендикулярные направлению створа, возникающие в сооружении, определяются с точностью до 0, 1мм соответственно по изменению положения поплавков относительно корпуса их ванночек. Отчеты на практике берутся по линейкам с нониусами. а б Рис. 26. Конструктивная схема обратного отвеса: а - схема, требующая полкой герметизации и большого объема масла; б - усовершенствованная схема; 1 - поплавок, 2 - струна; 3 - марка; 4 - корпус; 5 - рабочая жидкость; 6 - отсчетное устройство
а б
Рис. 27. Конструктивная схема метода натянутой нити для определения горизонтальных смешений обследуемых строительных объектов: а - общая схема; б - схема плавающих опор; 1- стальная проволока; 2 - натягивающий груз; 3 - неподвижная опора; 4 - плавающая опора; 5 - ванночки; 6 - поплавок; 7 - вилка фиксатора проволоки; 8 - ограждающие конструкции объекта Рассматриваемый метод разработан для наблюдений перемещений в гидротехнических сооружениях. В ходе обследования плотин при длине створов, например, до 600 м разброс показаний при повторных отсчетах не превышает ± 0, 2мм.
Фотометрические методы
Фотометрические методы условно подразделяются на классическую фотограмметрическую и стереофотограмметрическую съемки с последующей специальной камеральной обработкой полученных снимков. Рис. 28- Схема прохождения световых лучей при фотометрической съемке: 1 - исследуемый объект; 2 - фототеодолит или фотокамера; 3 - оптический центр фотокамеры; 4 - фотопленка
В настоящее время эти съемки все шире используются как в натурных испытаниях сооружений, так и при испытаниях, выполняемых в лабораторных условиях, в том числе и при испытаниях строительных моделей. Пространственная схема прохождения световых лучей при фотограмметрической съемке представлена на рис.28. Па практике при фотограмметрической съемке (рис.29) на выбранном расстоянии Y от объекта устанавливается фототеодолит и выполняется съемка до и после деформации обследуемого объекта. В результате координаты точки N по оси X и Z можно определить путем обработки полученных фотоснимков с использованием следующих формул:
Х= ; Z= где X и Z - соответственно координаты точки N на объекте; Y - расстояние до фототеодолита; f- фокусное расстояние фототеодолита; x и z - координаты точки N на фотоснимке. Для решения пространственной задачи с помощью стереофотограмметрической съемки возможно дополнительное определение по выполненным фотоснимкам значения координаты Y, т.е. удаления рассматриваемой точки N от фототеодолита. Для решения данной проблемы необходима съемка обследуемого объекта с двух точек согласно рис.30.
Рис.29. Горизонтальная проекция рабочей схемы фотограмметрической съемки
Рис. 30. Схема стереофотограмметрической съемки с двух позиций: 1- левый снимок; 2 - правый снимок; 3 -объект; S1, S2- местонахождения фокуса фототеодолита; В- база съемки
При этом в ходе обработки полученных двух снимков с двух позиций необходимо определить разность абсцисс Х1 и Х2, на указанных фотоснимках, используя следующую формулу:
р=Х1-Х2,
где р - горизонтальный параллакс фототеодолита.
Зная значения f, p, В можно определить значение Y до и после деформирования обследуемого объекта по формуле: Y = , где f- фокусное расстояние фототеодолита; p - горизонтальный параллакс; В - база съемки.
Обработка полученных фотоснимков на практике и нахождение параллаксов исследуемых точек производится с помощью специально предназначенного для этой цели оптического прибора - стереокомпаратора. Предложенные методы имеют следующие преимущества. 1. Одновременность фиксирования всех точек сооружения, отраженных на снимке. 2. Возможность определения перемещений в неограниченно большом числе точек, выделенных на снимке. 3. Комфортность обработки снимка, производимой а спокойных лабораторных условиях с возможностью неоднократной проверки полученных данных. Сами же фотографии одновременно являются надежным документом, отражающим фактическое состояние обследуемого объекта в момент съемки. Одновременно данный метод имеет и недостатки. 1. На практике требуется применение специальной аппаратуры. 2. Обслуживающий персонал должен иметь соответствующую квалификацию и подготовку. 3. Сама съемка ограничена пределами прямой видимости. 4. До начала работы необходимо выполнить специальные подготовительные работы. 5.Большое сооружение необходимо снимать с нескольких позиций, что нарушает одновременность съемки и усложняет контрольную обработку полученных снимков. Проведенная экспериментальная проверка показывает, что при удалении объекта от фототеодолита на 10 метров погрешность в определении перемещений в плоскости сооружения не превышает ±1мм. а погрешность в определении перемещений из плоскости сооружения достигает 13мм. При более близких расстояниях точность результатов измерения повышается. Для наблюдения за перемещениями в высотных сооружениях и подземных штольнях гидротехнических сооружений эффективно используют лазерные приборы, а также современные высокоточные радио- и светодальномеры.
Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 2042; Нарушение авторского права страницы