Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Линейный трёхразрядный шифратор.



Шифраторы – микросхемы средней степени интеграции, предназначенные для перевода сигнала, поданного только в один входной провод, в выходной параллельный двоичный код, который появится на выходе шифратора. Чтобы шифратор откликался на входной сигнал только одного провода, его схему делают приоритетной. Тогда выходной код должен соответствовать номеру «старшего» входа, получившего сигнал. Предположим, активные уровни поступили на входы 3, 4, 9. Старший по номеру вход здесь 9, он обладает приоритетом, поэтому выходной код шифратора 1001. Шифраторы различают по емкости, по числу каналов, а также по формату входного кода (двоичный, двоично-десятичный). Шифраторы находят различные применение в вычислительной и информационно-измерительной технике. Одно из них – преобразование чисел, вводимых пользователем, например, на калькуляторе, в двоичный код.

Шифраторы широко используются в разнообразных устройствах ввода информации в цифровые системы. Такие устройства могут снабжаться клавиатурой, каждая клавиша которой связана с определенным входом шифратора. При нажатии выбранной клавиши подается сигнал на определенный вход шифратора, и на его выходе возникает двоичное число, соответствующее выгравированному на клавише символу. Существуют приоритетные шифраторы. Если запрос поступает одновременно от двух клавиш, то будет активизирован выход той из них, который соответствует более высокой десятичной величине.Например: линейный трёхразрядный шифратор

Характеристики ЦАП.

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

Точность абсолютная – разность между имеющимся на выходе аналоговым сигналом и выходным сигналом, который ожидают получить при подаче на вход преобразователя данного цифрового кода. Источниками ошибок являются погрешность коэффициента передачи, погрешность смещения нуля, нелинейность и шум. Погрешность обычно взаимосвязана с разрешающей способностью, т.е. она всегда меньше ½ МР полной шкалы (ПШ).

Точность относительная – отклонение аналогового напряжения, соответствующего данному коду (отнесённого к полному интервалу аналоговых значений характеристик передачи прибора) от его теоретического значения (отнесённого к тому же интервалу) после калибровки интервала полной шкалы. Единицами измерения являются проценты. Относительную погрешность можно интерпретировать как меру нелинейности.

Коэффициент передачи – аналоговый масштабный коэффициент, обеспечивающий нормальное соотношение преобразования.

Младший разряд (МР) – разряд, обозначающий наименьшее значение или вес. Его аналоговый вес относительно ПШ составляет 2-n, где n – количество двоичных цифр. Характеризует наименьшее значение аналогового сигнала, которое можно получить на выходе n-разрядного преобразователя.

Старший разряд (СР) – разряд, соответствующий наибольшему значению или весу. Его аналоговый вес относительно интервала ПШ ЦАП составляет 1/2.

Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два (21) уровня, а восьмибитный — 256 (28) уровней. Разрядность тесно связана с эффективной разрядностью (англ. ENOB, Effective Number of Bits), которая показывает реальное разрешение, достижимое на данном ЦАП.

Время установления – время, требуемое для того, чтобы в ответ на заданное изменение цифрового сигнала выходной сигнал ЦАП достигал определённого значения, отличающегося от окончательного на некоторую величину (обычно МР).

Время переключения – время, требуемое для изменения состояния переключателей (время задержки + время нарастания сигнала от 10 до 90 %).

Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44, 1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.

Монотонность — свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.

Динамический диапазон — соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.

Статические характеристики:

DNL (дифференциальная нелинейность) - характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МР), отличается от правильного значения;

INL (интегральная нелинейность) - характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики;

Частотные характеристики:

SNDR (отношение сигнал/шум+искажения) - характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;

HDi (коэффициент i-й гармоники) - характеризует отношение i-й гармоники к основной гармонике;

HD (коэффициент гармонических искажений) - отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

3. Формула для расчета выходного напряжения на ОУ, работающем в режиме инвертора, имеем:

 

Подставим в это выражение условие, получим:

 

№_____13______

Дешифратор. Применение.

Дешифраторы – микросхемы средней степени интеграции, предназначенные для преобразования двоичного кода в напряжение логического уровня, появляющееся в том выходном проводе, десятичный номер которого соответствует двоичному коду. Например, входной код должен сделать активным провод с номером 9. Во всех остальных проводах дешифратора сигналы должны быть нулевыми.

Дешифраторы также различают по емкости, по числу каналов, по типу построения (линейные, матричные) а также по формату входного кода (двоичный, двоично-десятичный).

Дешифраторы находят различное применение в вычислительной и информационно-вычислительной технике. Одно из них – управление индикаторами, отражающими знаковую информацию.

Дешифраторы применяют в различных устройствах обработки и передачи информации: в телемеханике, в вычислительной технике (декодирующие устройства, преобразователи представления величин), в радиотехнике и измерительной технике (детекторы, демодуляторы), в системах телефонной и телеграфной связи. Назначение предопределяет структуру, число входов и выходов Д., форму и последовательность входных и выходных сигналов.

Здесь представлен линейный дешифратор на 2 входа и, соответственно, 4 выхода и временные диаграммы, поясняющие его работу.

Линейные дешифраторы обладают высоким быстродействием, однако из-за ограниченного количества входов типового элемента серии разрядность дешифрируемого кода не велика.

При интегральном исполнении дешифратора количество выходов микросхемы лимитировано, поэтому на вход подается прямой код Xl+ Xm. Инверсные разряды кода формируются инверторами, находящимися внутри кристалла микросхемы. Во избежание искажений результатов дешифрации целесообразно синхронизировать работу дешифратора. С этой целью кодовая комбинация поступает на вход дешифратора по стробирующему импульсу, который подается только после установления разрядов кодов на входных винтелях. Используя входы управления при параллельном включении микросхемы, можно дешифрировать код большей разрядности.

АЦП. Применение.

Аналого-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП.

Как правило, АЦП — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

Применение АЦП в звукозаписи. АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM-поток, который будет записан на компакт-диск.

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц. Многие люди, занятые в этой области, считают, что данный показатель избыточен и используется из чисто маркетинговых соображений (об этом свидетельствует теорема Котельникова-Шеннона). Можно сказать, что звуковой аналоговый сигнал не содержит столько информации, сколько может быть сохранено в цифровом сигнале при такой высокой частоте дискретизации, и зачастую для Hi-Fi-аудиотехники используется частота дискретизации 44, 1 кГц (стандартная для компакт-дисков) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания.

АЦП для звукозаписи, используемые в компьютерах, бывают внутренние и внешние. Также существует свободный программный комплекс PulseAudio для Linux, позволяющий использовать вспомогательные компьютеры как внешние ЦАП/АЦП для основного компьютера с гарантированным временем запаздывания.

Другие применения. Аналого-цифровое преобразование используется везде, где требуется обрабатывать, хранить или передавать сигнал в цифровой форме.

АЦП являются составной частью систем сбора данных.

Быстрые видео АЦП используются, например, в ТВ-тюнерах. (это параллельные и конвеерные АЦП)

Медленные встроенные 8, 10, 12 или 16-битные АЦП часто входят в состав микроконтроллеров. (как правило они строются по принципу поразрядного уравновешивания, точность их невысока)

Очень быстрые АЦП необходимы в цифровых осциллографах. (параллельные и конвеерные)

Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика. (сигма-дельта АЦП)

АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора.

Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС.

3. Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).

Способ №1:

N=5/2=2, 5/2=1, 25/2=0, 625В

Способ №2:

5/2N=0, 625 решим уравнение и найдём N.

5/0, 625=2N //прологорифмируем Л.и П. части

ln(8)=N*ln2

N=3.

№_____14______


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 1401; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь