Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Учет автотранспортной нагрузки
Известно, что основными источниками загрязнения атмосферного воздуха являются тепловая энергетика, промышленные предприятия и автомобильный транспорт, причем последний служит в городских условиях наиболее мощным загрязнителем атмосферы. В выхлопных газах двигателей содержится более 200 химических соединений и элементов; наибольший вклад в структуру загрязняющих веществ вносят оксиды углерода и азота, углеводороды, сернистые соединения, сажа. Загрязнение воздуха отработанными газами автомобилей отличается значительной неравномерностью в пространстве и во времени. Поэтому очень важен оперативный и детальный учет интенсивности и структуры транспортных потоков, особенно в городах и крупных населенных пунктах. Санитарные требования по уровню загрязнения допускают поток транспорта в жилой зоне интенсивностью не более 200 авт./ч. Для учета автомобильных потоков в прилегающем к школе микрорайоне составляется схема всех улиц, по которым разрешено движение транспорта. Затем выбирается несколько улиц с незначительным, средним и интенсивным движением автомашин. Учет автотранспортной нагрузки можно провести следующим методом [23], пригодным как для городских, так и для сельских районов. Суть его заключается в том, что на каждой выбранной улице намечается один или несколько створов наблюдений. Желательно, чтобы они располагались вдали от перекрестков и остановок транспорта, были удобны и (что особенно важно) безопасны для наблюдателей. На каждый створ требуется два наблюдателя: один учитывает машины, идущие из центра на окраину, второй - из окраинных районов в сторону центра. Каждую проехавшую мимо автомашину ученик отмечает точкой в соответствующей графе учетной таблицы, при этом целесообразно провести отдельный учет легковых автомобилей, грузовых машин, автобусов, тракторов и мотоциклов (троллейбусы, не играющие большой роли в загрязнении атмосферы, можно не учитывать). Смена наблюдателей на створах должна проводиться не реже чем через 1-1, 5 ч. На одних и тех же створах возможно проведение разнообразных наблюдений: - в разное время дня (суточные изменения); - в разные дни недели, но в одно и то же время (недельные изменения); - в разные сезоны года, но в одни и те же дни (сезонная динамика движения транспорта). По данным учетных таблиц можно построить графики суточной и недельной динамики движения транспорта на конкретной улице, сравнить транспортные потоки в центр и из центра города, сопоставить интенсивность движения на оживленной магистрали, возле своей школы, на улице вблизи своего дома и т.д. При построении графика на горизонтальной оси откладывается время (в часах - для суточной динамики или в днях - для длительного периода наблюдений), а на вертикальной оси - суммарная интенсивность транспортного потока. Такие графики легко сравнить между собой. В целях единообразия и получения информации в региональном плане необходимо придерживаться следующих рекомендаций: - выбирать не менее двух постов наблюдений (с незначительным и наиболее интенсивным движением транспорта), на которых будет проводиться ежегодное изучение автотранспортного потока; - проводить измерение в одни и те же сроки: ежедневные наблюдения с 14 до 15 ч. в разные периоды года; - в табл. 14 экопаспорта микрорайона проставлять среднюю за период наблюдений интенсивность транспортного потока (авт./ч.).
Глава 7. Методы мониторинга почв На уровне школьного мониторинга биоиндикация по растениям является доступным методом и используется для выбора контрольного и опытного участков, сходных по почвам и фитоценозам и имеющих единственное различие - степень антропогенного воздействия. Для характеристики почв ключевых участков можно использовать индикаторные виды растений, которые могут свидетельствовать о водном режиме почв, их кислотности, обеспеченности элементами минерального питания, состоянии плодородия. Ежегодные наблюдения за состоянием растительности исследуемых ключевых участков позволят определить антропогенную нагрузку на опытном участке, выявить виды, чувствительные к антропогенному воздействию. Для сравнения флор контрольного и опытного участков можно использовать следующие критерии: видовое разнообразие флор, состав видов-доминантов, встречаемость видов, морфологические изменения растений, степень поражения растений вредителями и болезнями.
Биоиндикациоиные методы 7.1.1. Растения – индикаторы плодородия почв [10, 11] Почва - один из главных объектов окружающей среды, центральное связующее звено между биотическим и абиотическим компонентами биосферы. Полный анализ почвы требует много времени и труда. Однако многие особенности почвы, в том числе и плодородие, можно определить по населяющим ее растениям-индикаторам. Так, например, о высоком плодородии свидетельствуют следующие растения: малина, крапива, иван-чай, таволга, сныть, чистотел, копытень, кислица, валериана, чина луговая, костер безостый. Индикаторы умеренного (среднего) плодородия: майник двулистный, медуница, дудник, грушанка, гравилат речной, овсяница луговая, купальница, вероника длиннолистная. О низком плодородии свидетельствуют сфагновые (торфяные) мхи, наземные лишайники, кошачья лапка, брусника, клюква, белоус, ситник нитевидный, душистый колосок. Безразличны к почвенному плодородию: лютик едкий, пастушья сумка, мятлик луговой, Черноголовка, ежа сборная. Малотребовательна к почвенному плодородию сосна обыкновенная. Кроме общего понятия «плодородие почвы», можно выяснить обеспеченность почвы определенными элементами. Например, о высоком содержании азота свидетельствуют растения-нитрофилы - иван-чай, малина, крапива; на лугах и пашне - разрастания пырея, гусиной лапчатки, спорыша (горца птичьего). При хорошем обеспечении азотом растения имеют интенсивно-зеленую окраску. Наоборот, недостаток азота проявляется бледно-зеленой окраской растений, уменьшением ветвистости и числа листьев. Высокую обеспеченность кальцием показывают кальциефилы: многие бобовые (например, люцерна серповидная), лиственница сибирская. При недостатке кальция господствуют кальциефобы - растения кислых почв: белоус, щучка (луговик дернистый), щавелек, сфагнум и др. Эти растения устойчивы к вредному действию ионов железа, марганца, алюминия.
7.1.2. Растения — индикаторы водного режима почв Индикаторами разного водного режима почв являются растения-гигрофиты, мезофиты, ксерофиты. Влаголюбивые растения (гигрофиты) - обитатели влажных, иногда заболоченных почв: голубика, багульник, морошка, селезеночник очередно-листный, белозор, калужница, герань луговая, камыш лесной, сабельник болотный, таволга вязолистная, горец змеиный, мята полевая, чистец болотный. Растения достаточно обеспеченных влагой мест, но не сырых и не заболоченных - мезофиты. Это большая часть луговых трав: тимофеевка, лисохвост луговой, пырей ползучий, ежа сборная, клевер луговой, горошек мышиный, чина луговая, василек фригийский. В лесу это брусника, костяника, копытень, золотая розга, плауны. Растения сухих местообитаний (ксерофиты): кошачья лапка, ястребинка волосистая, очитки (едкий, пурпурный, большой), ковыль перистый, толокнянка, полевица белая, наземные лишайники. 7.1.3. Растения — индикаторы глубины залегания грунтовых вод Установление показателей глубины залегания грунтовых вод имеет значение для уточнения свойств почв и для выработки рекомендаций по их мелиорации. Для индикации глубины залегания грунтовых вод можно использовать группы видов травянистых растений (индикаторные группы). Для луговых почв выделяется 5 групп индикаторных видов (табл. 7.1).
Помимо названных групп растений, есть переходные виды, которые могут выполнять индикаторные функции, например, мятлик луговой может быть включен как в первую, так и во вторую группы. Он указывает залегание воды на глубине от 100 до более 150 см. Хвощ болотный - от 10 до 100 см и калужница болотная - от 0 до 50 см. В качестве биоиндикатора может быть использован и один вид, если этот вид имеет массовое развитие в конкретном местообитании. Глубину почвенно-грунтовых вод в лесных экосистемах и характер увлажнения почв можно определить по табл. 7.2 (см. след. стр.). 7.1.4. Растения — индикаторы кислотности почв [10] Кислотность - одно из характерных свойств почвы лесной зоны. Повышенная кислотность отрицательно сказывается на росте и развитии ряда видов растений. Это происходит из-за появления в кислых почвах вредных для растений веществ, например растворимого алюминия или избытка марганца. Они нарушают углеводный и белковый обмен в растениях, задерживают образование генеративных органов и приводят к нарушению семенного размножения, а иногда вызывают гибель растений. Повышенная кислотность почв подавляет жизнедеятельность почвенных бактерий, участвующих в разложении органики и высвобождении питательных веществ, необходимых растениям
В лабораторных условиях кислотность почв можно определить универсальной индикаторной бумагой, набором Алямовского, рН-метром, а в полевых условиях - при помощи растений-индикаторов. В процессе эволюции сформировались три группы растений: ацидофилы - растения кислых почв, нейтрофилы - обитатели нейтральных почв, базифилы - растут на щелочных почвах. Зная растения каждой группы, в полевых условиях можно приблизительно определить кислотность почвы (табл. 7.3).
Данные о растениях-индикаторах на ключевых участках вносятся в табл. 18 экопаспорта. 7.1.5. Индикация состояния окружающей среды по частотам встречаемости фенов белого клевера [ 10, 25, 26] Оценить состояние окружающей среды и уровень антропогенного воздействия можно с помощью фенотипических биоиндикаторов. Фены - это четко различающиеся варианты какого-либо признака или свойства биологического вида. Под воздействием антропогенных факторов в популяциях увеличивается частота встречаемости специфических фенотипов у различных видов растений и животных. Таким образом, частота встречаемости некоторых фенов является биологическим индикатором воздействия антропогенных факторов, в том числе загрязнения. В качестве фенотипического биоиндикатора можно использовать широко распространенный белый клевер Trifolium repens (клевер ползучий). Форма седого рисунка на пластинках листа и частота встречаемости может использоваться как индикатор загрязнения среды. Наблюдения осуществляются путем подсчета форм с различным рисунком и без него (рис. 7.1) и последующего расчета частоты их встречаемости в процентах. Диагностику желательно проводить на разных пробных площадках, различающихся антропогенной нагрузкой и положением в ландшафте. Рекомендуется следующая методика работы. Сначала задается направление движения, по которому будет производиться исследование. Обнаружив экземпляр белого клевера (обычно в виде куртинки), определяют фенотип, к которому он относится (рис. 7.1), и делают отметку в соответствующей графе рабочей таблицы (табл. 7.4).
Отсчеты фенов следует проводить не чаще чем через два-три шага. Эта процедура повторяется по ходу движения в заданном направлении до конца пробной площадки. После этого направление движения меняется, и подсчет продолжается до тех пор, пока не будет сделано не менее 200 отсчетов. Если в какой-либо точке площадки обнаруживаются два разных фена, то данный результат не учитывается ввиду переплетения куртинок. При обнаружении на пробной площадке фенов, не указанных на рис. 7.1, результаты вносятся в графу «новые формы». Отдельно отмечается наличие растений с какими-либо уникальными фенами (например, с рисунком красного цвета), растения-мутанты с четырьмя, пятью и более листьями и т. д., делается их гербарий с описанием места и даты обнаружения. Для популяции белого клевера на каждой пробной площадке рассчитываются частоты встречаемости отдельных фенов Р., а также суммарная частота встречаемости всех форм с рисунком (индекс соотношения фенов ИСФ) в процентах:
,
где Pi - частота i-гo фена, ni - количество учтенных растений с i-м рисунком на листовой пластинке (n1 - число растений без «седого рисунка»), N - общее число учтенных растений. Результаты расчетов вносятся в табл. 7.5.
По величине ИСФ при достаточно большом количестве пробных площадок на исследуемой территории можно выделить наиболее антропогенно нагруженные участки. На чистых территориях величина ИСФ не превышает 30%, а на загрязненных территориях ИСФ может достигать 70-80%. Результаты феноиндикации заносятся в табл. 19 экопаспорта. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 1065; Нарушение авторского права страницы