Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теория стационарной Вселенной



В 1940-е годы Хойл не принял теорию Большого Взрыва. Одним
из недостатков этой теории было то, что из-за ошибок в измерении
интенсивности излучения далеких галактик Хаббл неправильно рас-
считал возраст Вселенной — 1, 8 млрд лет. Геологи же утверждали,
что Земля и Солнечная система, вполне возможно, насчитывают
миллиарды лет. Как же могла Вселенная быть моложе собственных
планет?


Вместе с коллегами, Томасом Голдом и Германом Бонли, Хойл на-
чал работу над созданием собственной теории. По легенде, их теория
стационарной Вселенной была навеяна триллером « Глубокой ночью »
с Майклом Редгрейвом в главной роли. Фильм состоит из нескольких
рассказов о страшных историях, но в последней сцене происходит
неожидаемый виток: фильм заканчивается точно так же, как и на-
чался. Таким образом, события замыкаются в круг, не имея ни начала,
ни конца. Как утверждают, именно фильм вдохновил трех ученых на
разработку теории Вселенной, у которой также не было ни начала, ни
конца. (Позднее Голд внес немного ясности в эту историю. Он вспо-
минал: «Кажется, несколькими месяцами ранее мы смотрели фильм,
и когда я предложил рассмотреть теорию устойчивой Вселенной, я
сказал: «А не напоминает ли это фильм " Глубокой ночью"? » )

По этой теории части Вселенной действительно расширялись, но
новая материя постоянно создавалась из ничего, так что плотность
Вселенной оставалась неизменной. Хотя Хойл не мог объяснить,
каким же именно таинственным образом эта материя появлялась
ниоткуда, теория незамедлительно привлекла сторонников, которые
вступили в борьбу с приверженцами теории Большого Взрыва. Хойлу
казалось нелогичным, что огненный катаклизм возник ниоткуда, став
причиной того, что галактики разлетелись во все стороны. Он пред-
почитал спокойное создание вещества из ничего. Иными словами,
такая Вселенная была бы безвременной. У нее не было ни начала, ни
конца. Она просто была всегда.

(Противостояние «Стационарная Вселенная— Большой
Взрыв» походило на противостояния разных теорий в геологии и
других науках. В геологии существовал затянувшийся спор между
теорией однородности [мнение о том, что Земля приобрела свою те-
перешнюю форму в результате постепенных изменений в прошлом]
и теорией катастроф [которая постулировала, что изменения про-
изошли в результате ужасных катаклизмов]. Несмотря на то что тео-
рия однородности и до сих пор объясняет многие из геологических
и экологических особенностей Земли, никто не станет отрицать вли-
яния комет и астероидов, которые становились причинами массовых
вымираний или разрушения и смещения континентов в результате
тектонических сдвигов.)


Лекции Би-Би-Си

Хойл всегда любил хорошую драку. В 1949 году его и Гамова пригла-
сила Британская радиовещательная корпорация (Би-Би-Си) для про-
ведения дискуссии о происхождении Вселенной. Во время этих пере-
дач Хойл, оспаривая теорию Большого Взрыва, и далей, собственно,
такое название. Он сказал следующее: «Эти теории основывались на
гипотезе о том, что вся материя во Вселенной была создана в резуль-
тате одного Большого Взрыва, происшедшего в определенное время
в далеком прошлом». Это название пристало. Теория Гамова отныне
была официально названа теорией Большого Взрыва, и название это
придумал ее величайший враг. (Позднее Хойл заявил, что не имел
в виду унизить противника. «Я ни в коем случае не выдумал это на-
звание для уничижения. Оно было выбрано в качестве аргумента в
споре», — признался он.)

(В течение многих лет сторонники теории Большого Взрыва
героически пытались это название изменить. Они недовольны этой,
почти вульгарной коннотацией названия теории, а также тем фак-
том, что его изобрел основной ее противник. Языковых пуристов
особенно раздражало то, что название и по сути-то абсолютно не-
верно. Во-первых, Большой Взрыв не был большим (поскольку это
был взрыв некоего крошечного образования, намного меньшего, чем
атом), а во-вторых, взрыва как такового не было (поскольку в откры-
том космосе не было воздуха). В августе 1993 года журнал «Небо и
Телескоп» объявил конкурс на новое название теории Большого
Взрыва. На конкурс было представлено тринадцать тысяч предло-
жений, но жюри не смогло выбрать из них вариант лучше первона-
чального.)

Чем Хойл поистине прославился в народе, так это своими зна-
менитыми радиолекциями на Би-Би-Си, посвященными науке.
В 1950-х годах Би-Би-Си планировала транслировать научные лек-
ции в субботу вечером. Однако, когда изначально приглашенный
гость отказался прийти, продюсеры вынуждены были искать замену.
Они связались с Хойлом, и тот согласился. И только потом они про-
верили досье ученого, где было написано: «Этого человека мы опаса-
емся приглашать».


К счастью, они проигнорировали неприятное предостережение
предыдущего продюсера, и Хойл прочитал миру пять захватываю-
щих лекций. Эти классические передачи Би-Би-Си очаровали всю
нацию и даже вдохновили молодое поколение будущих астрономов.
Астроном Уоллес Сарджент вспоминает, что эти передачи оказали
на него сильное воздействие: «Когда мне было пятнадцать, я по-
слушал лекции Фреда Хойла по Би-Би-Си под названием «Природа
Вселенной». Сама мысль о том, что вы знаете, какова температура
и плотность в центре Солнца, чудовищно шокировала. В пятнадца-
тилетнем возрасте казалось, что такие вещи лежат за пределами воз-
можного знания. Шокировали не просто сами цифры, а тот факт, что
их вообще можно узнать».

 

Звездный синтез

Хойл, который презирал праздные размышления, взялся за проверку
своей теории. Он был в восторге от идеи, что элементы Вселенной
испеклись не в топке Большого Взрыва, как считал Гамов, а в звезд-
ном ядре. Если около сотни химических элементов возникло в ядре
звезд, то потребность в существовании Большого Взрыва вообще
отпадала.

В ряде работ, содержащих плодотворные идеи и опубликован-
ных в 1940-е - 1950-е годы, Хойл и его коллеги описали в подроб-
ностях, как ядерные реакции в ядре звезд, а не в пламени Большого
Взрыва присоединяли все больше и больше протонов и нейтронов к
ядрам водорода и гелия до тех пор, пока не были созданы все тяжелые
элементы, во всяком случае до железа. (Они решили загадку, как соз-
дать элементы с массовым числом выше 5, которая поставила в тупик
Гамова. В гениальном озарении Хойл понял, что если существовала
ранее незамеченная неустойчивая форма углерода, состоящая из
трех ядер гелия, то она могла бы просуществовать достаточно долго,
чтобы послужить «мостом» для создания элементов высшего по-
рядка. В ядрах звезд эта новая неустойчивая форма углерода могла
продержаться достаточно долго для того, чтобы можно было путем
последовательного добавления все большего количества нейтронов
и протонов создать элементы с массовым числом выше 5 и 8. Когда


эта неустойчивая форма углерода действительно была обнаружена,
это открытие блестяще продемонстрировало, что нуклеосинтез про-
исходит в ядрах звезд, а не при Большом Взрыве. Хойл даже создал
большую компьютерную программу, определяющую почти с первых
шагов относительное содержание элементов во Вселенной.)

Но даже сильного жара внутри звезд недостаточно, чтобы «ис
печь» такие элементы, как медь, никель, цинк и уран. (Извлекать
энергию при слиянии элементов тяжелее железа чрезвычайно слож-
но в силу различных причин, в том числе отталкивания протонов в
ядре и нехватки связующей энергии.) Для тяжелых элементов пона-
добилась бы печка побольше — взрыв массивных, или сверхновых
звезд. При грандиозном взрыве гигантской звезды температура ее
предсмертной агонии может достигать триллионов градусов, и эта
энергия оказывается достаточной для «приготовления» элементов
тяжелее железа. По сути, это означает, что большинство элементов
тяжелее железа — результат взрыва сверхновых звезд.

В1957годуХойлвсоавторстве сМаргарети Джефри Бербиджами
и Уильямом Фаулером опубликовал, возможно наиболее значитель-
ную, работу, где в подробностях были представлены все этапы,
необходимые для создания элементов во Вселенной и для опреде-
ления их распространенности. Аргументы авторов были так точны,
вески и убедительны, что даже Гамову пришлось признать, что Хойл
представил убедительнейшую картину нуклеосинтеза. Гамов, в при-
сущей ему манере, даже сочинил следующий экспромт в библейском
стиле:

В самом начале, когда Бог создавал элементы, волнуясь при
счете, Он не назвал массу пять, а потому, естественно, не могли
образоваться тяжелые элементы. Бог был очень разочарован
и поначалу хотел снова взорвать Вселенную, а затем начать все
сначала. Но это было бы слишком просто. Тогда всемогущий Бог
решил исправить свою ошибку самым невероятным образом.
И сказал Бог: Да будет Хойл. И появился Хойл. И посмотрел Бог
на Хойла... И велел ему сотворить тяжелые элементы так, как ему
вздумается. И Хойл решил сотворить тяжелые элементы в ядрах
звезд и распространять их по Вселенной с помощью взрывов
сверхновых.


Аргументы против теории
стационарной Вселенной

Однако в течение десятилетий во всех направлениях науки накапли-
валось все больше доказательств, опровергающих «теорию стацио-
нарной Вселенной». Хойл обнаружил, что его борьба обречена на
верный проигрыш. По его теории, поскольку Вселенная не эволюци-
онировала, а постоянно создавала новую материю, ранняя Вселенная
должна была выглядеть очень похожей на Вселенную наших дней.
Видимые нам сегодня галактики тоже должны были походить на те
галактики, что существовали миллиарды лет назад. Теория стацио-
нарной Вселенной могла быть опровергнута, если бы были обнару-
жены признаки значительных эволюционных изменений Вселенной
на протяжении миллиардов лет.

В 1960-е годы в космическом пространстве обнаружили загадоч-
ные источники невероятной энергии, названные «квазарами», или
квазизвездными объектами. (Название было таким броским, что
позднее его использовали в качестве марки телевизора.) Квазары
генерировали невероятные количества энергии и характеризовались
красным смещением огромной величины, что означало, что они на-
ходятся на расстоянии миллиардов световых лет от нас, а также что
они освещали Вселенную еще в раннем ее детстве (сегодня астро-
номы считают, что квазары — это гигантские молодые галактики,
ведомые энергией огромных черных дыр). У нас нет доказательства
существования каких-либо квазаров сегодня, хотя согласно теории
стационарной Вселенной они должны существовать. За миллиарды
лет они исчезли.

В теории Хойла крылась еще одна проблема. Ученые доказали, что
во Вселенной слишком много гелия, чтобы это вписывалось в теорию
стационарной Вселенной. Гелий, известный как газ, используемый
для надувания воздушных шаров и небольших дирижаблей, в дей-
ствительности довольно редок на Земле, но он является вторым по
относительному содержанию элементом во Вселенной после водо-
рода. Вообще, он настолько редок, что впервые был обнаружен не на
Земле, а на Солнце. (В 1868 году ученые анализировали свет Солнца,
проходящий через призму. Преломленный луч света распадался на
обычную радугу цветов и спектральных линий, но ученые обнаружи-


ли нечеткие спектральные линии, вызванные загадочным элементом,
никогда не виденным ранее. Они ошибочно посчитали, что это ме-
талл, а названия металлов (в английской терминологии) оканчивают-
ся на Лит, например lithium (литий), uranium (уран). Они дали этому
загадочному металлу название helium (гелий) от греческого названия
Солнца, «Helios». Когда же в 1895 году гелий был найден на Земле в
залежах урана, ученые с большим смущением обнаружили, что это
газ, а не металл. Так название гелия, впервые открытого на Солнце,
изначально оказалось неправильным.)

Если первичный гелий в основной своей массе рождался в звезд-
ных ядрах, как считал Хойл, он должен был быть довольно редким и
находиться в недрах звезд. Но астрономические данные показали,
что относительное содержание гелия во Вселенной довольно высоко
и составляет 25 % от всей массы атомов во Вселенной. Было обнару-
жено, что гелий однородно распространен по всей Вселенной (как и
предполагал Гамов).

Сегодня мы знаем, что и в теории Гамова, и в теории Хойла были
зерна истины относительно нуклеосинтеза. Гамов считал, что все хи-
мические элементы были побочным результатом, или золой, Большого
Взрыва. Но его теорию убили провалы на пяти и восьми частицах.
Хойл же считал, что смог зачеркнуть теорию Большого Взрыва, по-
казав, что в звездах «пекутся» все элементы — к Большому Взрыву
прибегать нет никакой потребности. Но его теории не удалось объ-
яснить огромный процент гелия, существующий, как нам известно,
во Вселенной.

По существу, Гамов и Хойл дали нам взаимодополняющую картину
нуклеосинтеза. Очень легкие элементы с массой до 5 и 8 действитель-
но возникли в результате Большого Взрыва, как и предполагал Гамов.
Сегодня в результате последних физических открытий стало извест-
но, что во время Большого Взрыва действительно возникла большая
часть дейтерия, гелия-3, гелия-4 и лития-7, которые присутствуют в
природе. Но более тяжелые элементы были, в основном, созданы в
ядрах звезд, как утверждал Хойл. Если мы прибавим элементы тяже-
лее железа (медь, цинк и золото), которые возникли из обжигающего
жара сверхновых звезд, то мы получим завершенную картину, объяс-
няющую соотношение всех элементов во Вселенной. (Любая теория,
соперничающая с нынешними взглядами космологов, столкнулась бы


с задачей немыслимой сложности: объяснить возникновение более
сотни элементов во Вселенной и множества их изотопов.)

 

Как рождаются звезды

Одним из неожиданных результатов жаркого спора по поводу ну-
клеосинтеза стало довольно полное описание жизненного цикла
звезд. Стандартная звезда, такая, как наше Солнце, начинает жизнь
как огромный шар разреженного водорода, называемый протозвез-
дой; постепенно шар сжимается под воздействием силы гравитации.
Начиная сжиматься, этот шар ускоряет вращение (что часто влечет
за собой образование двойной звездной системы, где две звезды
следуют друг за другом по эллиптическим орбитам, или образование
планет в плоскости вращения звезды). Ядро звезды очень сильно
разогревается, достигая температуры приблизительно в 10 млн
градусов и более, при которой происходит нуклеосинтез водорода с
образованием гелия.

Когда звезда раскаляется, ее называют звездой главной последо-
вательности. Она может гореть около 10 млрд лет, сначала сгорает
водород, а потом гелий. Наше Солнце сейчас находится в срединной
точке этого процесса. По окончании периода сгорания водорода
начинает гореть гелий, вследствие чего звезда невероятно расширя-
ется — до размеров орбиты Марса — и становится «красным ги-
гантом». После того какгелиевое топливо истощается, внешние слои
звездного ядра рассеиваются, обнажая ядро — «белый карлик»
размером с Землю. Такими-то белыми карликами и встретят свою
смерть звезды небольшого размера — вроде нашего Солнца.

В звездахже, масса которых превосходит массу Солнца в 10-40 раз,
процесс нуклеосинтеза протекает намного быстрее. Когда звезда ста-
новится красным сверхгигантом, в ее ядре стремительно синтезиру-
ются легкие элементы, и поэтому звезда выглядит как некий гибрид:
белый карлик внутри красного гиганта. В этом белом карлике могут
синтезироваться легкие элементы (с атомным весом ниже железа),
составляющие периодическую таблицу элементов. Когда процесс
нуклеосинтеза достигает этапа, на котором создается железо как эле-
мент, энергия в процессе нуклеосинтеза больше не вырабатывается,
и по прошествии миллиардбв лет ядерные меха наконец прекращают


свою работу. В этот момент звезда внезапно коллапсирует, создавая
огромные давления, которые фактически вталкивают электроны в
ядра. (Создаваемая плотность может в 400 миллиардов раз превос-
ходить плотность воды.) В результате температура подскакивает до
триллионов градусов. Энергия гравитации, сконцентрированная
в этом крошечном объекте, вызывает взрыв, создавая сверхновую
звезду. Высокая температура взрыва снова вызывает нуклеосинтез и
синтезируются элементы с атомным весом выше железа по периоди-
ческой таблице.

Например, красная звезда-сверхгигант Бетельгейзе, легко разли-
чимая в созвездии Ориона, неустойчива; она может в любой момент
взорваться как сверхновая, испуская огромные количества гамма-лу-
чей и рентгеновских лучей. Когда это случится, сверхновая будет вид-
на даже днем, а ночью, возможно, затмит Луну. (Когда-то считалось,
что колоссальная энергия, освободившаяся при взрыве сверхновой,
уничтожила динозавров 65 млн лет тому назад- Вообще, сверхновая,
находись она на расстоянии около 10 световых лет от нас, могла
бы уничтожить всю жизнь на Земле. К счастью, звезды-кандидаты
в сверхновые — Спика и Бетельгейзе — находятся на расстоянии
260 и 430 световых лет соответственно: это слишком далеко от нас,
чтобы причинить какие-либо серьезные повреждения Земле, когда
они в конце концов взорвутся. Но некоторые ученые считают, что
вымирание некоторых морских организмов два миллиона лет тому
назад было вызвано именно взрывом сверхновой на расстоянии
120 световых лет от Земли.)

Это означает, что Солнце не является истинной «матерью»
Земли. Хотя многие народы Земли почитали Солнце как бога, со-
творившего Землю, такой подход верен лишь отчасти. Хотя изна-
чально Земля произошла от Солнца (будучи частью эклиптической
плоскости звездных обломков и пыли, циркулировавших вокруг
Солнца 4, 5 млрд лет назад), температура нашего Солнца высока
лишь настолько, чтобы был возможен процесс нуклеосинтеза водо-
рода с образованием гелия. Это означает, что нашей истинной «ма-
терью»-солнцем была безымянная звезда (или скопление звезд),
погибшая миллиарды лет назад при взрыве сверхновой, в результате
которого близлежащие туманности оказались насыщены элемен-
тами с атомным весом выше железа, из которых состоят наши тела.


Точнее, наши тела состоят из звездной пыли, из звезд, которые по-
гибли миллиарды лет назад.

После взрыва сверхновой остается лишь то, что сегодня называ-
ется нейтронной звездой, которая состоит из плотного ядерного ве-
щества, сжатого до размеров Манхэттена — почти 30 км. (Впервые
существование нейтронных звезд было предсказано в 1933 году
Фрицем Цвикки, но это казалось настолько фантастичным, что на
протяжении десятилетий ученые не обращали на его слова внима-
ния.) Поскольку нейтронная звезда испускает излучение нерегуляр-
но, а также вращается с огромной скоростью, она похожа на враща-
ющийся маяк, испускающий вспышки света в процессе вращения.
При наблюдении с Земли кажется, что нейтронная звезда пульсирует,
отсюда и ее название — пульсар.

Чрезвычайно большие звезды, имеющие массу, возможно, в 40 раз
превышающую массу Солнца, взорвавшись в конце концов как
сверхновые, могут оставить после себя нейтронную звезду, масса
которой больше трех солнечных масс. Гравитация этой нейтронной
звезды настолько велика, что она может противодействовать силе
отталкивания, возникающей между нейтронами, и звезда совершит
свой заключительный коллапс и превратится в самый необычный,
скорее всего, объект Вселенной — черную дыру, о которой я поведу
речь в пятой главе.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 747; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь