Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вывод: Чем больше количество начислений в году, тем больше разница между фактической и годовой (номинальной) ставками
Iф > Iy 2-ая функция сложного процента - Будущая стоимость аннуитета (накопление единицы за период) Часто бывает, что мы имеем дело не с единичным платежом, произведенным в определенный момент времени, а с серией платежей, происходящих в различные моменты времени. Если эти платежи происходят через строго определенные промежутки времени, то такая серия называется аннуитетом. Платежом k-го периода называется единовременный денежный вклад в этом периоде. Он обозначается через РМТ (payment). Аннуитет – это серия равномерных равновеликих платежей Аннуитеты разделяются на следующие категории: · Равномерные · неравномерные, · обычные · авансовые. Равномерным аннуитетом называется аннуитет, состоящий из серии равновеликих платежей. Противоположностью ему является неравномерный аннуитет, при котором величина платежей может быть разной в различных платежных периодах. Аннуитет называется обычным, если платежи осуществляются в конце каждого платежного периода, и авансовым, если платежи осуществляются в начале платежного периода. Вторая функция сложного процента показывает, какой будет стоимость серии равных сумм, депонированных в конце каждого из периодических интервалов, по истечении установленного срока.
Пример 4. Чтобы заработать себе на пенсию, вы решили откладывать в банк в конце каждого года по 100 денежных единиц. Сколько денег Вы снимите со счета через 5 лет, если банк начисляет 10% ежегодно?
Пример 5. Если вкладывать ежегодно $900 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?
Авансовый аннуитет Теперь перейдем к рассмотрению авансового аннуитета. Как и в случае обычного, рассмотрим накопленные суммы в конце первого, второго... n-ro периода: FV1 = РМТ • (1 + i), FV2 =PMT-(l + i)2+PMT-(l + i), FV3 =PMT-(l + i)3+PMT-(l + i)2+PMT-(l + i), FVn =PMT-(l + i)n+PMT-(l + i)n~1+... + PMT-(l + i)2+PMT-(l + i). Применив формулу суммы геометрической прогрессии, получаем:
Пример 6. Чтобы заработать себе на пенсию, вы решили откладывать в банк в начале каждого года по 100 денежных единиц. Сколько денег Вы снимите со счета через 5 лет, если банк начисляет 10% ежегодно?
Более частое, чем один раз в год, внесение депозитов. Периодические депозиты могут вноситься чаще, чем один раз в год, соответственно чаще накапливается процент. Тогда ранее полученная формула имеет вид:
Чем чаще делаются взносы, тем больше накопленная сумма. Пример 7. Если вкладывать ежемесячно $75 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?
Я функция сложного процента Фактор фонда возмещения Данная функция позволяет рассчитать величину периодического платежа, необходимого для накопления нужной суммы по истечении п платежных периодов при заданной ставке процента. Взнос на возмещение капитала – величина платежа, который необходимо депонировать (вкладывать) в каждом периоде при заданной ставке годового %, чтобы в последнем периоде получить требуемую сумму капитала. Типичный пример 8. Вы хотите купить загородный дом (авто). Ориентировочная стоимость 70 000 ден.ед. Сколько необходимо ежемесячно депонировать в банк под 11% годовых из вашей заработной платы (в конце месяца), чтобы через 8 лет ваша мечта осуществилась? PMT = 457.923? PMT a = 453
Из формулы будущей стоимости аннуитета можно сделать вывод, что величина каждого платежа (SFF) в случае обычного аннуитета вычисляется следующим образом:
Пример 9. Необходимо за 4 года скопить $1000 при ставке банка 10 %. Сколько придется вкладывать каждый год?
В случае авансового фонда возмещения (соответствующего авансовому аннуитету) формула единичного платежа (SFFa ) имеет вид (депонирование в начале периода):
Шаровый платеж Понятие шаровый платеж – представьте себе, что Вы взяли в кредит на N лет под I% годовых. По условиям кредита Вы должны каждый месяц вносить какой-либо оговоренный взнос, а в конце N-года погасить всю оставшуюся сумму. Величина этой суммы и называется шаровый платеж. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 288; Нарушение авторского права страницы