Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Как представляются в компьютере целые числа?
Целые числа могут представляться в компьютере со знаком или без знака. Целые числа без знака Обычно занимают в памяти компьютера один или два байта. В однобайтовом формате принимают значения от 000000002 до 111111112. В двубайтовом формате — от 00000000 000000002 до 11111111 111111112. Диапазоны значений целых чисел без знака
Примеры: а) число 7210 = 10010002 в однобайтовом формате: б) это же число в двубайтовом формате: в) число 65535 в двубайтовом формате: Целые числа со знаком Обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа. Диапазоны значений целых чисел со знаком
Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.
Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения. Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например: Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение. 1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например: 2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например: 3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например: Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.
Что такое алгебра логики?
Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами. Что же такое логическое высказывание?
Так, например, предложение " 6 — четное число" следует считать высказыванием, так как оно истинное. Предложение " Рим — столица Франции" тоже высказывание, так как оно ложное. Разумеется, не всякое предложение является логическим высказыванием. Высказываниями не являются, например, предложения " ученик десятого класса" и " информатика — интересный предмет". Первое предложение ничего не утверждает об ученике, а второе использует слишком неопределённое понятие " интересный предмет". Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла. Предложения типа " в городе A более миллиона жителей", " у него голубые глаза" не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь. Такие предложения называются высказывательными формами.
Алгебра логики рассматривает любое высказывание только с одной точки зрения — является ли оно истинным или ложным. Заметим, что зачастую трудно установить истинность высказывания. Так, например, высказывание " площадь поверхности Индийского океана равна 75 млн кв. км" в одной ситуации можно посчитать ложным, а в другой — истинным. Ложным — так как указанное значение неточное и вообще не является постоянным. Истинным — если рассматривать его как некоторое приближение, приемлемое на практике. Употребляемые в обычной речи слова и словосочетания " не", " и", " или", " если..., то", " тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками. Bысказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания, не являющиеся составными, называются элементарными. Так, например, из элементарных высказываний " Петров — врач", " Петров — шахматист" при помощи связки " и" можно получить составное высказывание " Петров — врач и шахматист", понимаемое как " Петров — врач, хорошо играющий в шахматы". При помощи связки " или" из этих же высказываний можно получить составное высказывание " Петров — врач или шахматист", понимаемое в алгебре логики как " Петров или врач, или шахматист, или и врач и шахматист одновременно". Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний. Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание " Тимур поедет летом на море", а через В — высказывание " Тимур летом отправится в горы". Тогда составное высказывание " Тимур летом побывает и на море, и в горах" можно кратко записать как А и В. Здесь " и" — логическая связка, А, В — логические переменные, которые мoгут принимать только два значения — " истина" или " ложь", обозначаемые, соответственно, " 1" и " 0". Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение: НЕ Операция, выражаемая словом " не", называется отрицанием и обозначается чертой над высказыванием (или знаком ). Высказывание истинно, когда A ложно, и ложно, когда A истинно. Пример. " Луна — спутник Земли" (А); " Луна — не спутник Земли" ( ). И Операция, выражаемая связкой " и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой " . " (может также обозначаться знаками или & ). Высказывание А . В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание " 10 делится на 2 и 5 больше 3" истинно, а высказывания " 10 делится на 2 и 5 не больше 3", " 10 не делится на 2 и 5 больше 3", " 10 не делится на 2 и 5 не больше 3" — ложны. ИЛИ Операция, выражаемая связкой " или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание " 10 не делится на 2 или 5 не больше 3" ложно, а высказывания " 10 делится на 2 или 5 больше 3", " 10 делится на 2 или 5 не больше 3", " 10 не делится на 2 или 5 больше 3" — истинны. ЕСЛИ-ТО Операция, выражаемая связками " если..., то", " из... следует", "... влечет...", называется импликацией (лат. implico — тесно связаны) и обозначается знаком . Высказывание ложно тогда и только тогда, когда А истинно, а В ложно. Каким же образом импликация связывает два элементарных высказывания? Покажем это на примере высказываний: " данный четырёхугольник — квадрат" ( А ) и " около данного четырёхугольника можно описать окружность" ( В ). Рассмотрим составное высказывание , понимаемое как " если данный четырёхугольник квадрат, то около него можно описать окружность". Есть три варианта, когда высказывание истинно:
Ложен только один вариант, когда А истинно, а В ложно, то есть данный четырёхугольник является квадратом, но около него нельзя описать окружность. В обычной речи связка " если..., то" описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться " бессмысленностью" импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими: " если президент США — демократ, то в Африке водятся жирафы", " если арбуз — ягода, то в бензоколонке есть бензин". РАВНОСИЛЬНО Операция, выражаемая связками " тогда и только тогда", " необходимо и достаточно", "... равносильно...", называется эквиваленцией или двойной импликацией и обозначается знаком или ~. Высказывание истинно тогда и только тогда, когда значения А и В совпадают. Например, высказывания " 24 делится на 6 тогда и только тогда, когда 24 делится на 3", " 23 делится на 6 тогда и только тогда, когда 23 делится на 3" истинны, а высказывания " 24 делится на 6 тогда и только тогда, когда 24 делится на 5", " 21 делится на 6 тогда и только тогда, когда 21 делится на 3" ложны. Высказывания А и В, образующие составное высказывание , могут быть совершенно не связаны по содержанию, например: " три больше двух" ( А ), " пингвины живут в Антарктиде" ( В ). Отрицаниями этих высказываний являются высказывания " три не больше двух" ( ), " пингвины не живут в Антарктиде" ( ). Образованные из высказываний А и В составные высказывания A B и истинны, а высказывания A и B — ложны. Итак, нами рассмотрены пять логических операций: отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция.
Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания. Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (" не" ), затем конъюнкция (" и" ), после конъюнкции — дизъюнкция (" или" ) и в последнюю очередь — импликация. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 465; Нарушение авторского права страницы