Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Бесконечнозначная логика как обобщение многозначной системы Поста



Исходя из системы Рщ Поста, мы (А. Г.) строим бесконечнозначную систему Gх0. Значениями истинности являются 1 (ис­тина), 0 (ложь) и все дробные числа в интервале от 1 до 0, построенные в форме

и в форме где к — целочисленный показатель.

 

Это числа: 1, ½, ¼, ¾, 1/8, 7/8, 1/16, 15/16, …,

 

Операции: отрицание, дизъюнкция, импликация и эквиваленция в Gх0 — определены следующими равенствами:

1. Отрицание:

2. Дизъюнкция:

3. Конъюнкция:

4. Импликация:

5. Эквиваленция:

Отрицание в системе Gх0 является обобщением второго (сим­метричного) отрицания n-значной логики Поста. Посредством именно второго отрицания строятся конъюнкция, импликация и эквиваленция в системе Gх0. Система Gх0 построенная пред­ложенным способом, имеет множество тавтологий34. Тавтологи­ей, например, является формула, гласящая, что отрицание р, повторенное два раза, даст первоначальное значение Тавтологиями в Gх0 будут четыре правила де Моргана.

Тавтологии в Gх0 являются тавтологиями в двузначной ло­гике, ибо бесконечнозначная система Gх0 является обобщением системы Ря Поста, а последняя есть обобщение двузначной логики.

Для проверки правильности построения Gх0предложенным нами способом на основании системы Gх0 построили систему G3, взяв в качестве значений истинности 1, 1\2, 0. Система G3 совпадает с системой Р3Поста. Из системы G х0 также вычленяется 4-значная система G 4, значениями истинности аргументов которой являются 1, ½, ¼, 0, а значениями истинности функции: 1, ½, ¼, ¾, 0.

Отрицание определяется по формуле

Конъюнкция, дизъюнкция, импликация, эквиваленция в G4опре­делены табл. 23.

Таблица 23

В 4-значной системе G4содержится классическая двузначная логика [при значениях истинности 1 («истина») и 0 («ложь»)], а также система Р3Поста (при значениях истинности 1, 1/2, 0).

Аналогично из Gх0 вычленяется система G5, а также G6,, G7 G8и т. д.

 

Об интерпретации системы Gх0

В системе Gх0 между крайними значениями истинности — 1

(«истина») и 0 («ложь») лежит бесконечное число значений истин­ности: 1/2 , 1/4, 3/4, 1/8, 7/8 и т. д. Процесс познания осуществляется

таким образом, что мы идем от незнания к знанию, от непо­лного, неточного знания к более полному и более точному, от относительной истины к абсолютной. Абсолютная истина (в узком смысле) складывается из бесконечной суммы относитель­ных истин. Если значению истинности, равному 1, придать семан­тический смысл абсолютной истины, а значению 0 — значение лжи (заблуждения, отсутствия знания), то промежуточные значе­ния истинности отразят процесс достижения абсолютной истины как бесконечный процесс, складывающийся из познания относи­тельных истин, значениями которых в системе Gх0 являются 1/2 , ¼, ¾, 1/8, 7/8... — и т. д. Чем ближе значение истинности перемен­ных (выражающих суждения) к 1, тем большая степень приближе­ния к абсолютной истине. Так осуществляется процесс познания от незнания к знанию, от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д. Этот бес­конечный процесс познания и отражает бесконечнозначная систе­ма Gх0, построенная нами как обобщение двузначной классичес­кой логики, характеризующей процесс познания в рамках опери­рования предельными значениями истинности суждений — исти­на и ложь. Такова семантическая интерпретация бесконечнозначной системы Gх0 раскрывающая ее роль в процессе познания истины.

 

ИНТУИЦИОНИСТСКАЯ ЛОГИКА

 

Интуиционистская логика построена в связи с развитием ин­туиционистской математики. Интуиционистская школа основана в 1907 г. голландским математиком и логиком Л. Брауэром (1881—1966)35, но некоторые ее идеи выдвигались и ранее.

Интуиционизм — философское направление в математике и логике, отказывающееся от использования абстракции актуаль­ной бесконечности, отвергающее логику как науку, предшест­вующую математике, и рассматривающее интуитивную ясность и убедительность («интуицию») как последнюю основу матема­тики и логики. Интуиционисты свою интуиционистскую матема­тику строят с помощью финитных (конечных) средств на основе системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны — фило­софскую и математическую.

Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной шко­лы конструктивной математики отмечают положительное значе­ние некоторых математических идей интуиционистов.

В целом конструктивная математика существевно отличается от интуиционистской. Советский математик-конструктивист А. А. Марков (1903—1979) пишет о том, что конструктивное направление имеет точки соприкосновения с так называемой интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого призна­ют правильной данную Брауэром критику закона исключенного третьего. Вместе с тем конструктивисты считают неприемлемы­ми методологические основы интуиционизма.

В этом высказывании ясно разделены две стороны интуици­онизма — математическая и философская. Если первая сторона имеет рациональную часть (в этой связи предпочтительнее гово­рить об интуиционистской математике или интуиционистской логике, а не об интуиционизме), то вторая сторона интуициониз­ма (его методологические, идеалистические, философские осно­вы) совершенно неприемлема.

Брауэр считал, что чистая математика представляет собой свободное творение разума и не имеет никакого отношения к опытным фактам. У интуиционистов единственным источни­ком математики оказывается интуиция, а критерием приемлемо­сти математических понятий и выводов является «интуитивная ясность». Но интуиционист Гейтинг вынужден признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности.

Основой происхождения математики в конечном итоге является не какая-то «интуитивная ясность» — продукт сознания человека, а отражение пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии тоже субъективный идеалист. Он утверждает, что для математической мысли характерно, что она не выражает истину о внешнем мире, а связана исключительно с умственными построениями36.

Еще в 1936 г. советский математик А. Н. Колмогоров под­верг критике субъективно-идеалистические основы интуициониз­ма, заявив, что невозможно согласиться с интуиционистами, когда они говорят, что математические объекты являются про­дуктом конструктивной деятельности нашего духа, ибо матема­тические объекты являются абстракциями реально существую­щих форм независимой от нашего духа действительности. Интуиционисты не признают человеческую практику и опыт источни­ком формирования математических понятий, методов математи­ческих построений и методов доказательств.

Особенности интуиционистской логики вытекают из характер­ных признаков интуиционистской математики.

В современной классической математике часто прибегают к косвенным доказательствам. Но их почти невозможно ввести в интуиционистской математике и логике, так как там не призна­ются закон исключенного третьего и закон которые уча­ствуют в косвенных доказательствах.

Закон исключенного третьего для бесконечных множеств в ин­туиционистской логике не проходит потому, что знак отрицания) требует общего метода для решения любой проблемы или, более явно, общего метода, который по произ­вольному высказыванию р позволил бы получать либо доказате­льство р, либо доказательство отрицания р. Гейтинг считает, что так как интуиционисты не располагают таким методом, то они и не вправе утверждать принцип исключенного третьего. Пока­жем это на таком примере. Возьмем утверждение: «Всякое целое число, большее единицы, либо простое, либо сумма двух про­стых, либо сумма трех простых». Неизвестно, так это или нет, хотя в рассмотренных случаях, которых конечное число, это так. Существует ли число, которое не удовлетворяет этому требова­нию? Мы не можем указать такое число и не можем вывести противоречие из допущения его существования.»

Эта знаменитая проблема Гольдбаха (X. Гольдбах — мате­матик) была поставлена им в 1742 г. и не поддавалась решению около 200 лет. Гольдбах высказал предположение, что всякое целое число, большее или равное шести, может быть представ­лено в виде суммы трех простых чисел. Для нечетных чисел она была положительно решена только в 1937 г. советским матема­тиком — академиком И. М. Виноградовым; все достаточно большие нечетные числа представимы в виде суммы трех про­стых чисел. Это одно из крупнейших достижений современной математики. Но закон непротиворечия представители как инту­иционистской, так и конструктивной логик считают неограничен­но применимым.

Брауэр первый наметил контуры новой логики. Идеи Брауэра формализовал Гейтинг, в 1930 г. построивший интуиционистское исчисление предложений с использованием импликации, конъюн­кции, дизъюнкции и отрицания на основе 11 аксиом и двух правил вывода — модуса поненс (modus ponens) и правила под­становки. Гейтинг утверждает, что, хотя основные различия меж­ду классической и интуиционистской логиками касаются свойств отрицания, эти логики не совсем совпадают и в формулах без отрицания. Гейтинг отличает математическое отрицание от фак­тического: первое выражается в форме конструктивного постро­ения (выполнения) определенного действия, а второе говорит о невыполнении действия (а «невыполнение» чего-либо не являет­ся конструктивным действием). Интуиционистская логика имеет дело только с математическими суждениями и лишь с математическим отрицанием, которое определяется через понятие проти­воречия, а понятие противоречия интуиционисты считают перво­начальным, выражающимся или приводящимся в форме 1 = 2, Фактическое отрицание не связано с понятием противоречия.

Проблемами интуиционистской логики в нашей стране зани­маются К. Н. Суханов, М. И. Панов, А. Л, Никифоров и др.

 

КОНСТРУКТИВНЫЕ ЛОГИКИ

 

Конструктивная логика, отличная от логики классической, своим рождением обязана конструктивной математике. Конст­руктивная математика может быть кратко охарактеризована как наука о конструктивных процессах и нашей способности их осу­ществлять. В результате конструктивного процесса возникает конструктивный объект, т. е. такой объект, который задается эффективным (точным и вполне понятным) способом построения (алгоритмом)37.

Конструктивное направление (в математике и логике) ограни­чивает исследование конструктивными объектами и проводит его в рамках абстракции потенциальной осуществимости (реализу­емости), т. е. игнорирует практическое ограничение наших воз­можностей построений в пространстве, времени, материале.

Между идеями конструктивной логики советских исследова­телей и некоторыми идеями интуиционистской логики (напри­мер, в понимании дизъюнкции, в отказе от закона исключенного третьего) имеются точки соприкосновения.

Однако конструктивная и интуиционистская логики имеют существенные отличия.

1. Различные объекты исследования. В основу конструктивной логики, которая является логикой конструктивной математики, положена абстракция потенциальной осуществимости, а в качест­ве объектов исследования допускаются лишь конструктивные объекты (слова в определенном алфавите).

В основу интуиционистской логики, являющейся логикой ин­туиционистской математики, положена идея «свободно становя­щейся последовательности» (т. е. последовательности, строящей­ся не по алгоритму), которую интуиционисты считают интуитив­но ясной.

2. Обоснование интуиционистской математики и логики дает­ся с помощью идеалистически истолкованной интуиции, а обо­снование конструктивной математики и логики дается на базе научного математического понятия алгоритма (например, нор­мального алгоритма А. А. Маркова) или эквивалентного ему понятия рекурсивной функции.

3. Различные методологические основы. Методологической основой конструктивного направления в математике отечествен­ные исследователи считают положения материализма, с позиций которого критерием истинности познания (в том числе и научно­го) является практика. Это положение сохраняет свою силу и для таких наук, как логика и математика, хотя здесь практика входит в процесс познания лишь опосредованно, в конечном счете.

Интуиционисты же, оставаясь в рамках субъективно-идеали­стической философии, считают источником формирования математических понятий и методов не человеческую практику, а пер­воначальную «интуицию», а критерием истинности в математи­ке — «интуитивную ясность».

4. Различные интерпретации**. А. Н. Колмогоров рассмат­ривал интуиционистскую логику как исчисление задач. А. А. Ма­рков определял логические связки конструктивной логики как прилагаемые к потенциально осуществляемым конструктивным процессам (действиям).

Интуиционистская логика Л. Брауэра и А. Гейтинга интер­претируется ими как исчисление предложений (высказываний), причем область высказываний у них ограничивается математи­ческими предложениями.

5. Отличие ряда логических средств. Отечественные предста­вители узко-конструктивной логики признают в качестве принци­па: если имеется алгоритмический процесс и удалось опроверг­нуть, что он продолжается бесконечно, то, следовательно, про­цесс закончится. Некоторые из представителей конструктивной логики доказывают его в уточненной форме.

Представители интуиционистской логики не признают этот принцип.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 281; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь