Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Бесконечнозначная логика как обобщение многозначной системы Поста
Исходя из системы Рщ Поста, мы (А. Г.) строим бесконечнозначную систему Gх0. Значениями истинности являются 1 (истина), 0 (ложь) и все дробные числа в интервале от 1 до 0, построенные в форме и в форме где к — целочисленный показатель.
Это числа: 1, ½, ¼, ¾, 1/8, 7/8, 1/16, 15/16, …,
Операции: отрицание, дизъюнкция, импликация и эквиваленция в Gх0 — определены следующими равенствами: 1. Отрицание: 2. Дизъюнкция: 3. Конъюнкция: 4. Импликация: 5. Эквиваленция: Отрицание в системе Gх0 является обобщением второго (симметричного) отрицания n-значной логики Поста. Посредством именно второго отрицания строятся конъюнкция, импликация и эквиваленция в системе Gх0. Система Gх0 построенная предложенным способом, имеет множество тавтологий34. Тавтологией, например, является формула, гласящая, что отрицание р, повторенное два раза, даст первоначальное значение Тавтологиями в Gх0 будут четыре правила де Моргана. Тавтологии в Gх0 являются тавтологиями в двузначной логике, ибо бесконечнозначная система Gх0 является обобщением системы Ря Поста, а последняя есть обобщение двузначной логики. Для проверки правильности построения Gх0предложенным нами способом на основании системы Gх0 построили систему G3, взяв в качестве значений истинности 1, 1\2, 0. Система G3 совпадает с системой Р3Поста. Из системы G х0 также вычленяется 4-значная система G 4, значениями истинности аргументов которой являются 1, ½, ¼, 0, а значениями истинности функции: 1, ½, ¼, ¾, 0. Отрицание определяется по формуле Конъюнкция, дизъюнкция, импликация, эквиваленция в G4определены табл. 23. Таблица 23 В 4-значной системе G4содержится классическая двузначная логика [при значениях истинности 1 («истина») и 0 («ложь»)], а также система Р3Поста (при значениях истинности 1, 1/2, 0). Аналогично из Gх0 вычленяется система G5, а также G6,, G7 G8и т. д.
Об интерпретации системы Gх0 В системе Gх0 между крайними значениями истинности — 1 («истина») и 0 («ложь») лежит бесконечное число значений истинности: 1/2 , 1/4, 3/4, 1/8, 7/8 и т. д. Процесс познания осуществляется таким образом, что мы идем от незнания к знанию, от неполного, неточного знания к более полному и более точному, от относительной истины к абсолютной. Абсолютная истина (в узком смысле) складывается из бесконечной суммы относительных истин. Если значению истинности, равному 1, придать семантический смысл абсолютной истины, а значению 0 — значение лжи (заблуждения, отсутствия знания), то промежуточные значения истинности отразят процесс достижения абсолютной истины как бесконечный процесс, складывающийся из познания относительных истин, значениями которых в системе Gх0 являются 1/2 , ¼, ¾, 1/8, 7/8... — и т. д. Чем ближе значение истинности переменных (выражающих суждения) к 1, тем большая степень приближения к абсолютной истине. Так осуществляется процесс познания от незнания к знанию, от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д. Этот бесконечный процесс познания и отражает бесконечнозначная система Gх0, построенная нами как обобщение двузначной классической логики, характеризующей процесс познания в рамках оперирования предельными значениями истинности суждений — истина и ложь. Такова семантическая интерпретация бесконечнозначной системы Gх0 раскрывающая ее роль в процессе познания истины.
ИНТУИЦИОНИСТСКАЯ ЛОГИКА
Интуиционистская логика построена в связи с развитием интуиционистской математики. Интуиционистская школа основана в 1907 г. голландским математиком и логиком Л. Брауэром (1881—1966)35, но некоторые ее идеи выдвигались и ранее. Интуиционизм — философское направление в математике и логике, отказывающееся от использования абстракции актуальной бесконечности, отвергающее логику как науку, предшествующую математике, и рассматривающее интуитивную ясность и убедительность («интуицию») как последнюю основу математики и логики. Интуиционисты свою интуиционистскую математику строят с помощью финитных (конечных) средств на основе системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны — философскую и математическую. Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной школы конструктивной математики отмечают положительное значение некоторых математических идей интуиционистов. В целом конструктивная математика существевно отличается от интуиционистской. Советский математик-конструктивист А. А. Марков (1903—1979) пишет о том, что конструктивное направление имеет точки соприкосновения с так называемой интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем конструктивисты считают неприемлемыми методологические основы интуиционизма. В этом высказывании ясно разделены две стороны интуиционизма — математическая и философская. Если первая сторона имеет рациональную часть (в этой связи предпочтительнее говорить об интуиционистской математике или интуиционистской логике, а не об интуиционизме), то вторая сторона интуиционизма (его методологические, идеалистические, философские основы) совершенно неприемлема. Брауэр считал, что чистая математика представляет собой свободное творение разума и не имеет никакого отношения к опытным фактам. У интуиционистов единственным источником математики оказывается интуиция, а критерием приемлемости математических понятий и выводов является «интуитивная ясность». Но интуиционист Гейтинг вынужден признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности. Основой происхождения математики в конечном итоге является не какая-то «интуитивная ясность» — продукт сознания человека, а отражение пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии тоже субъективный идеалист. Он утверждает, что для математической мысли характерно, что она не выражает истину о внешнем мире, а связана исключительно с умственными построениями36. Еще в 1936 г. советский математик А. Н. Колмогоров подверг критике субъективно-идеалистические основы интуиционизма, заявив, что невозможно согласиться с интуиционистами, когда они говорят, что математические объекты являются продуктом конструктивной деятельности нашего духа, ибо математические объекты являются абстракциями реально существующих форм независимой от нашего духа действительности. Интуиционисты не признают человеческую практику и опыт источником формирования математических понятий, методов математических построений и методов доказательств. Особенности интуиционистской логики вытекают из характерных признаков интуиционистской математики. В современной классической математике часто прибегают к косвенным доказательствам. Но их почти невозможно ввести в интуиционистской математике и логике, так как там не признаются закон исключенного третьего и закон которые участвуют в косвенных доказательствах. Закон исключенного третьего для бесконечных множеств в интуиционистской логике не проходит потому, что знак отрицания) требует общего метода для решения любой проблемы или, более явно, общего метода, который по произвольному высказыванию р позволил бы получать либо доказательство р, либо доказательство отрицания р. Гейтинг считает, что так как интуиционисты не располагают таким методом, то они и не вправе утверждать принцип исключенного третьего. Покажем это на таком примере. Возьмем утверждение: «Всякое целое число, большее единицы, либо простое, либо сумма двух простых, либо сумма трех простых». Неизвестно, так это или нет, хотя в рассмотренных случаях, которых конечное число, это так. Существует ли число, которое не удовлетворяет этому требованию? Мы не можем указать такое число и не можем вывести противоречие из допущения его существования.» Эта знаменитая проблема Гольдбаха (X. Гольдбах — математик) была поставлена им в 1742 г. и не поддавалась решению около 200 лет. Гольдбах высказал предположение, что всякое целое число, большее или равное шести, может быть представлено в виде суммы трех простых чисел. Для нечетных чисел она была положительно решена только в 1937 г. советским математиком — академиком И. М. Виноградовым; все достаточно большие нечетные числа представимы в виде суммы трех простых чисел. Это одно из крупнейших достижений современной математики. Но закон непротиворечия представители как интуиционистской, так и конструктивной логик считают неограниченно применимым. Брауэр первый наметил контуры новой логики. Идеи Брауэра формализовал Гейтинг, в 1930 г. построивший интуиционистское исчисление предложений с использованием импликации, конъюнкции, дизъюнкции и отрицания на основе 11 аксиом и двух правил вывода — модуса поненс (modus ponens) и правила подстановки. Гейтинг утверждает, что, хотя основные различия между классической и интуиционистской логиками касаются свойств отрицания, эти логики не совсем совпадают и в формулах без отрицания. Гейтинг отличает математическое отрицание от фактического: первое выражается в форме конструктивного построения (выполнения) определенного действия, а второе говорит о невыполнении действия (а «невыполнение» чего-либо не является конструктивным действием). Интуиционистская логика имеет дело только с математическими суждениями и лишь с математическим отрицанием, которое определяется через понятие противоречия, а понятие противоречия интуиционисты считают первоначальным, выражающимся или приводящимся в форме 1 = 2, Фактическое отрицание не связано с понятием противоречия. Проблемами интуиционистской логики в нашей стране занимаются К. Н. Суханов, М. И. Панов, А. Л, Никифоров и др.
КОНСТРУКТИВНЫЕ ЛОГИКИ
Конструктивная логика, отличная от логики классической, своим рождением обязана конструктивной математике. Конструктивная математика может быть кратко охарактеризована как наука о конструктивных процессах и нашей способности их осуществлять. В результате конструктивного процесса возникает конструктивный объект, т. е. такой объект, который задается эффективным (точным и вполне понятным) способом построения (алгоритмом)37. Конструктивное направление (в математике и логике) ограничивает исследование конструктивными объектами и проводит его в рамках абстракции потенциальной осуществимости (реализуемости), т. е. игнорирует практическое ограничение наших возможностей построений в пространстве, времени, материале. Между идеями конструктивной логики советских исследователей и некоторыми идеями интуиционистской логики (например, в понимании дизъюнкции, в отказе от закона исключенного третьего) имеются точки соприкосновения. Однако конструктивная и интуиционистская логики имеют существенные отличия. 1. Различные объекты исследования. В основу конструктивной логики, которая является логикой конструктивной математики, положена абстракция потенциальной осуществимости, а в качестве объектов исследования допускаются лишь конструктивные объекты (слова в определенном алфавите). В основу интуиционистской логики, являющейся логикой интуиционистской математики, положена идея «свободно становящейся последовательности» (т. е. последовательности, строящейся не по алгоритму), которую интуиционисты считают интуитивно ясной. 2. Обоснование интуиционистской математики и логики дается с помощью идеалистически истолкованной интуиции, а обоснование конструктивной математики и логики дается на базе научного математического понятия алгоритма (например, нормального алгоритма А. А. Маркова) или эквивалентного ему понятия рекурсивной функции. 3. Различные методологические основы. Методологической основой конструктивного направления в математике отечественные исследователи считают положения материализма, с позиций которого критерием истинности познания (в том числе и научного) является практика. Это положение сохраняет свою силу и для таких наук, как логика и математика, хотя здесь практика входит в процесс познания лишь опосредованно, в конечном счете. Интуиционисты же, оставаясь в рамках субъективно-идеалистической философии, считают источником формирования математических понятий и методов не человеческую практику, а первоначальную «интуицию», а критерием истинности в математике — «интуитивную ясность». 4. Различные интерпретации**. А. Н. Колмогоров рассматривал интуиционистскую логику как исчисление задач. А. А. Марков определял логические связки конструктивной логики как прилагаемые к потенциально осуществляемым конструктивным процессам (действиям). Интуиционистская логика Л. Брауэра и А. Гейтинга интерпретируется ими как исчисление предложений (высказываний), причем область высказываний у них ограничивается математическими предложениями. 5. Отличие ряда логических средств. Отечественные представители узко-конструктивной логики признают в качестве принципа: если имеется алгоритмический процесс и удалось опровергнуть, что он продолжается бесконечно, то, следовательно, процесс закончится. Некоторые из представителей конструктивной логики доказывают его в уточненной форме. Представители интуиционистской логики не признают этот принцип.
|
Последнее изменение этой страницы: 2017-03-14; Просмотров: 281; Нарушение авторского права страницы