Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Распределение Максвелла. Экспериментальная проверка закона распределения Максвелла.



Распределение Ма́ ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физикеионосферы и космической плазмы, где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и — постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма.

Первым экспериментальным подтверждением существования распределения молекул по скоростям можно считать результаты опыта Штерна, описанного в параграфе 2.3. Но точность этого опыта была недостаточной для установления конкретного вида распределения.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом. Упрощенная схема этого эксперимента показана на рис. 5.6.

 

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5, параллельной их оси. В установке Ламмерта в дисках было сделано множество щелей (они на рисунке не изображены) с целью увеличения интенсивности прошедшего пучка. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью , через их прорези беспрепятственно проходили только атомы, имевшие скорость :

 

, (5.75)

где - расстояние между вращающимися дисками.

Изменяя угловую скорость вращения дисков можно было отбирать из пучка молекулы, имеющие определенную скорость , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить статистический закон распределения молекул по скоростям. Позже, когда при создании ядерного оружия возникла необходимость выделения нейтронов с определенной кинетической энергией, подобная схема была применена в устройстве, названным нейтронным монохроматором, позволяющим получать энергетические спектры нейтронов.

Несколько иначе был организован эксперимент по определению распределения по скоростям для атомов цезия, выполненный в 1947 году немецким физиком-экспериментатором Иммануэлем Эстерманом (1900 - 1973) совместно сО. Симпсоном и Штерном. На рис. 5.7. приведено схематическое изображение опыта Эстермана. Пучок атомов цезия вылетал через отверстие в печи 1 с некоторой скоростью и под действием силы тяжести начинал двигаться по параболе. Атомы, прошедшие через узкую щель в диафрагме 2, улавливались детектором 3, который можно было располагать на различных высотах .

Величина отклонения пучка в гравитационном поле Земли зависела от скорости атома. В этих опытах отклонение составляло величину порядка нескольких долей миллиметра при расстоянии от печи до детектора равном 2 метрам. Перемещая датчик и регистрируя количество атомов цезия, попадающих в детектор за единицу времени, можно было построить зависимость интенсивности пучка от величины . Последующий пересчет, с учетом известной зависимости высоты от скорости атома , давал распределение по скоростям атомов цезия.

Все проведенные эксперименты подтвердили справедливость полученного Максвеллом распределения по скоростям для атомных и молекулярных пучков.

 

Распределение Больцмана.

Распределение Больцмана — распределение вероятностей различных энергетических состоянийидеальной термодинамической системы (идеальный газ атомов или молекул) в условияхтермодинамического равновесия; открыто Л. Больцманом в 1868—1871.

Согласно распределению Больцмана среднее число частиц с полной энергией равно

где — кратность состояния частицы с энергией — число возможных состояний частицы с энергией . Постоянная находится из условия, что сумма по всем возможным значениям равна заданному полному числу частиц в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию можно считать состоящей из

кинетической энергии (кин) частицы (молекулы или атома),

внутренней энергии (вн) (например, энергии возбуждения электронов) и

потенциальной энергии (пот) во внешнем поле, зависящей от положения частицы в пространстве:

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 1225; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь