Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ВНУТРЕННЯЯ ЭНЕРГИЯ СИСТЕМЫ. СПОСОБЫ ЕЕ ИЗМЕНЕНИЯ. ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ.
Внутренняя энергия - величина, характеризующая термодинамическое состояние тела. Каждое тело состоит из частиц, которые постоянно движутся и взаимодействуют друг с другом. Внутренняя энергия тела является суммой кинетической энергии движения частиц вещества и потенциальной энергии их взаимодействия.
Внутренняя энергия тела может изменяться при взаимодействии с окружающими телами. Способы изменения внутренней энергии тела: теплообмен и совершение механической работы (над телом или самим телом). Теплообмен - вид теплопередачи без совершения работы. При этом энергия передается от более нагретых тел к менее нагретым. Виды теплообмена: теплопроводность, конвекция, излучение. Теплопроводность - передача энергии от более нагретых тел к менее нагретым или от более нагретых частей тела к менее нагретым в результате теплового движения частиц. Конвекция - перенос энергии потоками жидкости или газа. Излучение -перенос энергии разного рода лучами (электромагнитными волнами). Первый закон термодинамики. Первый закон термодинамики: изменение внутренней энергии системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. Δ U = Q + A где Δ U - изменение внутренней энергии, Q - количество теплоты, преданное системе, A - работа внешних сил. Работа самой системы A` = - A, тогда первый закон термодинамики можно сформулировать так: Количество теплоты, переданное системе, идёт на измене её внутренней энергии и на совершение системой работы.
ПРИМЕНЕНИЕ ПЕРВОГО ЗАКОНА ТЕРМОДИНАМИКИ К ИЗОПРОЦЕССАМ. АДИАБАТНЫЙ ПРОЦЕСС. Тепловые двигатели. Устройство, в котором происходит преобразование внутренней энергии в механическую называют тепловым двигателем. Основные элементы теплого двигателя: нагреватель, рабочее тело, холодильник. В качестве рабочего тела чаще используют газ, который при расширении совершает работу. Двигатель должен работать циклически, следовательно должна существовать последовательность процессов, приводящих рабочее тело в первоначальное состояние. Такую последовательность процессов называют рабочим циклом тепловой машины. В ходе цикла работа газа совершаемая при расширении должна быть больше работы внешних сил по сжатию газа, в противном случае полезной работы тепловой двигатель совершать не будет. Чтобы работа по сжатию газа оказалась меньше, необходимы нагреватель и холодильник. КПД теплового двигателя. Работа, совершаемая рабочим телом, равна разности получаемого от нагревателя и отданного холодильнику количеств теплоты. КПД теплового двигателя: . Второй закон термодинамики. В циклически действующей тепловой машине невозможен процесс, единственным результатом которого был бы преобразование в механическую работы всего количества теплоты, полученного от нагревателя. АДИАБАТНЫЙ ПРОЦЕСС
Адиабатный процесс, процесс, происходящий в физической системе без теплообмена с окружающей средой. А. п. можно осуществить в системе, окруженной теплоизолирующей (адиабатной) оболочкой. Пример такого А. п. — рабочий такт тепловой машины, при котором газ (пар) расширяется в цилиндре с теплоизолирующими стенками и поршнем, при отсутствии необратимых превращений работы трения в теплоту. А. п. можно реализовать и при отсутствии адиабатной оболочки; для этого он должен протекать настолько быстро, чтобы за время процесса не произошло теплообмена между системой и окружающей средой. Так происходит, например, сжатие газа ударной волной, при котором газ, не успевая отдать выделившуюся теплоту, сильно нагревается. При скорости волны порядка 1 км/сек (скорости, достигнутой современными сверхзвуковыми самолётами) и сжатии воздуха под действием ударной волны в 4 раза температура воздуха повышается до 700°С. Адиабатное расширение газа с совершением работы против внешних сил и сил взаимного притяжения молекул вызывает его охлаждение. Такое охлаждение газов лежит в основе процесса сжижения газов. А. п. размагничивания парамагнитных солей позволяет получить температуры, близкие к абсоллютному нулю (см. Магнитное охлаждение). А. п. могут протекать обратимо (см. Обратимый процесс) и необратимо. В случае обратимого А. п. энтропия системы остаётся постоянной. Поэтому обратимый А. п. называют ещё изоэнтропийным. На диаграмме состояния системы он изображается кривой, называемой адиабатой, или изоэнтропой. В необратимых А. п. энтропия возрастает. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 2419; Нарушение авторского права страницы