Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЗАКОН АМПЕРА. РАБОТА ПО ПЕРЕМЕЩЕНИЮ ПРОВОДНИКА С ТОКОМ В МАГНИТНОМ ПОЛЕ.



 

 

На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если проводник не закреплен (например, одна из сторон контура сделана в виде подвижной перемычки, рис. 1), то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током.

Для вычисления этой работы рассмотрим проводник длиной l с током I (он может свободно двигаться), который помещен в однородное внешнее магнитное поле, которое перпендикулярно плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера, рассчитывается по формуле

Под действием данной силы проводник передвинется параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, которая совершается магнитным полем, равна

так как ldx=dS — площадь, которую пересекает проводник при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, который пронизывает эту площадь. Значит,

(1)

т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Данная формула справедлива и для произвольного направления вектора В.

Рассчитаем работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Будем считать, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения перейдет в положение М', изображенное на рис. 2 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж или от нас) дано на рисунке. Контур М условно разобьем на два соединенных своими концами проводника: AВС и CDА.

Работа dA, которая совершается силами Ампера при иссследуемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е.

(2)

Силы, которые приложенны к участку CDA контура, образуют острые углы с направлением перемещения, поэтому совершаемая ими работа dA2> 0..Используя (1), находим, эта работа равна произведению силы тока I в нашем контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, который пронизывает контур в его конечном положении. Значит,

(3)

Силы, которые действуют на участок AВС контура, образуют тупые углы с направлением перемещения, значит совершаемая ими работа dA1< 0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, который пронизывает контур в начальном положении. Значит,

(4)

Подставляя (3) и (4) в (2), найдем выражение для элементарной работы:

где dФ2—dФ1=dФ' — изменение магнитного потока сквозь площадь, которая ограничена контуром с током. Таким образом,

(5)

Проинтегрировав выражение (5), найдем работу, которая совершается силами Ампера, при конечном произвольном перемещении контура в магнитном поле:

(6)

значит, работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Выражение (6) верно для контура любой формы в произвольном магнитном поле.

 

 

ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ДВИЖУЩИЙСЯ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. СИЛА ЛОРЕНЦА.

Сила Лоренца

- сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.


Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца


.

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0, и заряд в магнитном поле движется равномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной

и создает центростремительное ускорение равное

В этом случае частица движется по окружности.


.

Согласно второму закону Ньютона: сила Лоренца равнв произведению массы частицы на центростремительное ускорение

тогда радиус окружности

а период обращения заряда в магнитном поле

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Магнитные свойства вещества объясняются согласно гипотезе Ампера циркулирующими внутри любого вещества замкнутыми токами:



внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.
Поэтому:
1. если вещество не обладает магнитными свойствами - элементарные магнитные поля несориентированы ( из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Намагничевание вещества

- появление собственного внутреннего магнитного поля.

Все вещества, помещенные во внешнее магнитное поле, создают собственное внутреннее магнитное поле.

По своим магнитным свойствам все вещества подразделяются на:

парамагнетики диамагнетики ферромагнетики
---------------------------------- ----------------------------------- -----------------------------
слабомагнитные вещества слабомагнитные вещества сильномагнитные вещества
O2, Al, Pb и др. гелий, аргон, Au, Zn, Cu, вода, стекло и др. неболшая группа кристаллич. тел: Fe, Ni, Co и сплавы
внутреннее магнитное поле направлено также, как и внешнее магнитное поле внутреннее магнитное поле направлено противоположно внешнему магнитному полю, но слабовыражено внутреннее магнитное поле в 100-1000 раз больше внешнего магнитного поля


Ферромагнетики сохраняют сильную намагниченность и после удаления внешнего магнитного поля и называются постоянными магнитами. Сильное внутреннее магнитное поле ферромагнетиков объясняется не только обращением электронов по орбитам, но, в основном, вращением их вокруг собственной оси. Чтобы полностью размагнитить ферромагнетик, надо поместить его во внешнее магнитное поле противоположно направленное. Существуют ферромагнетики, не проводящие электрический ток - ферриты.

Точка Кюри

Для каждого ферромагнетика существует определенная температура - точка Кюри.

1. Если t вещества < t Кюри, то вещество обладает ферромагнитными свойствами.
2. Если t вещества > t Кюри, то ферромагнитные свойства (намагниченность) исчезают, и вещество становится парамагнетиком.

Поэтому постоянные магниты при нагревании теряют свои магнитные свойства.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 730; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь