Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Изменчивостью пластов и стратиграфическими несогласиями
Границы залежей можно проводить по линиям полного замещения коллекторов продуктивного горизонта на площади непроницаемыми породами или по линии выклинивания коллекторов. Потерю горизонтом коллекторских свойств при сохранении его в разрезе называют замещением коллекторов, а соответствующую экранирующую границу — линией фациального замещения коллекторов или границей распространения коллекторов. Положение линии замещения коллекторов определяют по данным керна и промысловой геофизики о том, какими породами — проницаемыми или непроницаемыми - представлен пласт в каждой скважине. При ограниченном числе скважин положение линии замещения может быть определено лишь приближенно. На плане расположения скважин одним знаком отмечаются скважины, в которых пласт представлен проницаемыми породами, другим знаком — скважины с непроницаемыми породами. Линия замещения на площади между этими скважинами проводится условно либо строго на половине расстояния между ними, либо немного дальше от скважины, в которой отмечается большая толщина пласта, и несколько ближе к скважине с меньшей его толщиной. При выклинивании или размыве продуктивных отложений, сопровождающихся несогласным залеганием слоев, образуются линии выклинивания или размыва, ограничивающие площадь, за пределами которой пласт не отлагался или размыт. Наличие выклинивания и размыва продуктивных отложений устанавливается по несогласному залеганию продуктивных и перекрывающих (подстилающих) отложений и выпадению из разрезов скважин продуктивного пласта. Определение положения линий выклинивания или размыва возможно несколькими способами. Выбор способа зависит от объема исходных данных. При небольшом числе пробуренных скважин линии выклинивания и размыва проводятся условно посредине между каждой парой скважин, в одной из которых имеется продуктивный пласт, а в другой - отсутствует. Этот способ обычно применяют на стадии проектирования разработки по редкой сети разведочных скважин. После разбуривания залежи эксплуатационными скважинами положение линии выклинивания можно уточнить по градиенту уменьшения толщины продуктивных отложений в направлении к линии выклинивания. Для этого используют карту общей толщины продуктивного горизонта в изолиниях, построенную по данным всех пробуренных скважин. Нулевая изопахита на этой карте соответствует линии выклинивания и считается границей залежи (или одного из ее пластов). Положение линий выклинивания и размыва можно таюке уточнить путем построения серии профилей. Для этого перпендикулярно к уточняемой линии через пробуренные скважины проводится возможно большее число профилей В каждый профиль должно быть включено несколько скважин, расположенных в зоне распространения продуктивного пласта и в зоне его отсутствия. На профилях проводят линии, соответствующие положению кровли и подошвы продуктивного пласта. Смыкание кровли подстилающих и подошвы перекрывающих пласт отложений отмечает точку, в которой линия выклинивания или размыва пересекает профиль. Эти точки переносят на карту и, соединив их, получают в плане линию выклинивания или размыва. 6.6.5. Изучение положения ВНК в залежах с подошвенной водой В пределах залежей насыщающие продуктивный пласт газ, нефть и вода располагаются по высоте в соответствии с действием гравитационных и молекулярно-поверхностных сил. В результате действия гравитационных сил верхнюю часть залежи заполняет газ, имеющий минимальную плотность, ниже располагается нефть, а еще ниже - вода. Однако молекулярно-поверхностные силы препятствуют гравитационному распределению газа и жидкостей в пористой среде. Это проявляется в том, что в продуктивных пластах содержится определенное количество остаточной воды, а также в сложном распределении по разрезу газа, нефти и воды в приконтактных зонах пласта. На границе воды с нефтью вода, а на границе нефти с газом нефть под действием капиллярного давления в части капилляров поднимается выше уровня, соответствующего уровню гравитационного распределения. Значение капиллярного подъема h определяется уравнением: h = 2ав „ cosOeM! \ri g(p„ -рн)\ (6.14) где — поверхностное натяжение на границе раздела нефти и воды; ()в н — краевой угол смачивания на той же границе; г — радиус капиллярной трубки; g — ускорение свободного падения; ps и рп — плотность соответственно воды и нефти. Исходя из формулы, можно отметить, что высота капиллярного подъема увеличивается: • при уменьшении радиуса капилляров; • при уменьшении разницы плотностей контактирующих фаз; • при уменьшении краевого угла смачивания; • при увеличении поверхностного натяжения на границе раздела двух фаз. В результате четкие границы между газо-, нефте- и водонасы- щенными частями пласта часто не образуются, и имеются так называемые переходные зоны. В пределах переходной зоны содержание нефти (газа) возрастает снизу вверх от нуля до предельного насыщения. Толщина переходных зон на контакте нефть - вода в разных залежах меняется от нескольких сантиметров до десятков метров. Так, в верхнемеловых залежах Северного Кавказа на Эльдаровском, Бра- гунском, Малгобек-Вознесенском и других месторождениях, где нефтеносность связана с трещиноватыми известняками и плотность нефти мала, толщина переходной зоны не превышает нескольких сантиметров, а в Западной Сибири в залежах нефти, приуроченных к полимиктовым коллекторам, она достигает 12—15 м. Переходные зоны от нефти к газу обычно имеют небольшую толщину. На рис. 112 показано распределение газа, нефти и воды в условном продуктивном пласте с предельной нефтегазонасышен- ностью 80%. Здесь по характеру насыщенности можно выделить пять интервалов (снизу вверх): V- водоносная зона; IV - переходная зона от воды к нефти; III — нефтяная зона; II — переходная зона от нефти к газу; / — газоносная зона. Указанные особенности распределения газа, нефти и воды по разрезу создают сложности в определении границ залежей по нефтегазонасыщенности пород — водо- нефтяного контакта (ВНК), газонефтяного контакта (ГНК), газоводяного контакта (ГВК). На рис. 113 показано изменение по разрезу нефтеводонасыщен- ности и капиллярного давления в реальном терригенном коллекторе с высокими фильтрационно-емкостными свойствами. Из рисунка видно, что при капиллярном давлении, равном нулю, пористая среда полностью водонасыщена, т.е. коэффициент водонасыщенно- сти ke— 1. Несколько выше нулевого уровня капиллярного давления четко выделяется уровень I, на котором в пористой среде появляется нефть (кривая 2). Выше уровня коэффициент нефтенасыщенности кн возрастает вначале весьма интенсивно, затем все медленнее, пока не достигает значений, близких к предельному (0, 86). Соответственно кв выше уровня / уменьшается вначале быстро (кривая /), затем медленнее, до значений, близких к минимальным (0, 14). По значениям к, близким к максимальным, а к — близким к минимальным, и' 'в ' с некоторой долей условности проводится уровень II. Уровень /соответствует подошве переходной зоны, а уровень II— ее кровле. Кривые 3, 4 на рис. 111 характеризуют зависимость фазовой проницаемости в переходной зоне от насыщенности нефтью и водой. По фазовой проницаемости переходную зону можно разделить на три части.
В нижней части переходной зоны фазовая проницаемость коллекторов для нефти равна нулю, и лишь по достижении определенного значения к. нефть способна двигаться по пористой среде. Этому значению кн соответствует уровень III, ниже которого в переход- нои зоне подвижной является только вода. Выше уровня III в средней части переходной зоны подвижностью обладают как вода, так и нефть, причем постепенно фазовая проницаемость для нефти возрас- ___ *. ■ . тает, а для воды снижает- & 1 1 ся. По достижении опреде-." | ленного критического зна чения кв фазовая проницае- 1 * rl £ * мость для воды становится равной нулю. Этому значе- '' нию кв соответствует уровень IV, выше которого может перемещаться только нефть. В настоящее время нет единого подхода к выбору поверхности, принимаемой за ВНК. В одних случаях за ВНК принимают уровень IV. Так проводят ВНК при изучении формы залежей нефти в кварцевых коллекторах Урало-Поволжья, где толщина переходной зоны 5— 8 м. Расстояние между IVуровнем и подошвой переходной зоны здесь равно 1—1, 4 м. Поэтому количество подвижной нефти ниже уровня IV невелико и его не учитывают в запасах. В других случаях за ВНК принимают уровень III. Так проводят ВНК по залежам в полимиктовых коллекторах нефтяных месторождений Западной Сибири, где толщина переходной зоны достигает 10—15 м и более. Здесь толщина слоя между III и IVуровнем иногда 6— 10 м и количество подвижной нефти в нем столь значительно, что пренебрегать им нельзя. Таким образом, на практике в качестве поверхности ВНК принимается одна из рассмотренных граничных поверхностей переходной зоны. Эту поверхность выбирают исходя из толщины переходной зоны в целом и отдельных ее частей. Информацией о положении ВНК, ГНК, ГВК в каждой отдельной скважине служат данные керна, промысловой геофизики и опробования.
Основную информацию о положении контактов получают методами промысловой геофизики. Нижняя граница переходной зоны Таким образом, в случаях, когда толщина переходной зоны невелика (до 2 м) и в качестве ВНК принимают ее нижнюю границу, задача является наиболее простой. ГВК также четко фиксируется на диаграммах электрометрии. ГНК и ГВК уверенно выделяются на диаграммах НГК по резкому возрастанию интенсивности нейтронного гамма-излучения. При большой толщине переходной зоны нахождение положения ВНК по данным ГИС осложняется, поскольку необходимо определять положение нижней и верхней границ переходной зоны и собственно ВНК. Верхняя граница переходной зоны проводится на диаграммах электрометрии (градиент-зонда) по максимуму КС (рис. 112). Выделение по данным электрометрии граничных поверхностей с фазовой проницаемостью для каждой фазы (нефти и воды), равной нулю, осуществляется путем установления соответствующих им критических значений сопротивления рккр. Значение рккр зависит от свойств коллектора, в частности от его пористости, и для каждой залежи обосновывается исходя из результатов поин- тервального опробования водонефтяной зоны в скважинах с высоким качеством цементирования. Определение начального положения контактов путем опробования пластов в скважине проводится преимущественно в разведочных скважинах на стадии подготовки залежи к разработке. Чаще путем опробования проверяют правильность данных ГИС о положении контактов. Однако в случаях, например, карбонатных трещинных коллекторов, когда методы промысловой геофизики недостаточно эффективны, опробование служит основным или даже единственным методом. Оно может проводиться в процессе бурения в необсаженных скважинах с помощью испытателей пластов на каротажном кабеле или через бурильные трубы со специальным пакерным устройством. Наиболее результативно поинтер- вальное опробование пластов в обсаженных скважинах. Поверхности ВНК, ГНК и ГВК могут представлять собой плоскости, горизонтальные или наклонные, но могут иметь и более сложную форму, находясь на отдельных участках залежи выше или ниже среднего положения. Форма контакта зависит от величины напора и направления движения пластовых вод, неоднородности продуктивных пластов и других факторов. По залежам в малоактивных водонапорных системах, приуроченным к относительно однородным пластам, поверхности ГВК, ГНК и ВНК обычно представляют собой горизонтальную плоскость. Поверхность контакта в пределах залежи считается горизонтальной, если разность абсолютных отметок ее в отдельных точках (скважинах) не больше удвоенной средней квадратической погрешности определения. Для глубин залежей до 2000 м эта погрешность в среднем составляет ± 2, 0 м. При значительном напоре подземных вод поверхность контакта может быть наклонена в сторону области разгрузки. Наклон может достигать 5—10 м и более на крупных залежах с обширными во- донефтяными зонами. При значительной литологической изменчивости продуктивных пластов на участках с ухудшенной коллекторской характеристикой в результате повышенного действия капиллярных сил ВНК часто находится несколько выше. В результате поверхность ВНК приобретает усложненную форму. При наклонном положении или сложной форме контакта для его пространственного изображения строят карту поверхности контакта в изолиниях. Для этого используют принятые по комплексу всех данных отметки контакта по каждой скважине. Значения абсолютных отметок контакта в каждой скважине наносят на план расположения скважин и путем линейной интерполяции определяют положение изогипс поверхности контакта. Линии пересечения ВНК, ГВК или ГНК с поверхностями пласта-коллектора являются контурами нефтеносности (газоносности), ограничивающими по площади размеры залежи и ее зон с равным характером нефтегазоводонасыщения. Применительно к каждому контакту различают внешний и внутренний контуры. Внешний контур — линия пересечения контакта с верхней поверхностью пласта, внутренний — с нижней поверхностью. Во внутреннем контуре находится чисто нефтяная (газовая) часть пласта. Внешний контур является границей залежи. Между внешним и внутренним контурами располагается приконтурная (водонефтяная, водогазовая, газонефтяная) часть. Соответственно положение внешнего контура находят на карте верхней, а внутреннего — на карте нижней поверхности пласта, (рис. 113). В процессе добычи нефти обычно происходит продвижение контуров нефтеносности. Одной из задач рациональной разработки является обеспечение равномерного продвижения этих контуров. При неравномерном продвижении контуров нефтеносности образуются языки обводнения, что может привести к появлению разрозненных целиков нефти (рис. 114), захваченных водой. Неравномерное продвижение контуров нефтеносности зависит от неоднородности пласта (особенно по его проницаемости), отбора жидкости из пласта без учета этой неоднородности и т.д. При наличии подошвенных вод (граница нефтеносности проходит лишь по кровле пласта) задача заключается в том, чтобы при вскрытии пласта не пересечь водо-нефтяной контакт скважиной (забой скважины должен быть выше этого контакта) во избежания появления конусов обводнения уже в самом начале эксплуатации (рис. 115). По мере эксплуатации и подъема водонефтяного контакта при наличии подошвенной воды обычно появляются конусы обводнения, и борьба с ними весьма затруднена. При наличии в пласте (особенно в его подошвенной части) глинистых прослоев борьба с конусами обводнения значительно облегчается путем цементирования забоев скважин; в ряде случаев, при наличии в подошвенной части пласта глинистых прослоев, конусы обводнения вообще не образуются. При горизонтальном контакте на карте контур проводят по изогипсе, соответствующей гипсометрическому положению контакта или параллельно изогипсе с близким значением. При горизонтальном контакте линия контура не может пересекать изогипсы.
При наклонном положении контакта, если диапазон изменения его абсолютных отметок больше принятого сечения изо- Рис. 115. Схема расположения конусов обводнения при наличии подошвенных вод: I— нефть; II — вода; III— глинистый прослой 1, 2, 3 — скважины гипс, линии контуров пересекают изогипсы карт поверхностей пласта. В этом случае положение контуров определяется с помощью метода схождения (рис. 116). Для этого совмещают карту поверхности пласта и карту поверхности контакта, построенные с одинаковым сечением изогипс. Линия контура проводится через точки пересечения одноименных изогипс. Если продуктивный горизонт сложен прерывистыми, литологи- чески изменчивыми пластами и его кровля (подошва) не совпадает на отдельных участках залежи с поверхностями продуктивных кол- лекторов, определение положения контуров по структурным картам недопустимо. Оно может привести к завышению площади нефтега- зонасыщенности. Чтобы не допустить этого, положение контуров нужно определять по картам кровли поверхностей проницаемой части горизонта. В целом, как видно из изложенного, форма залежей определяется формой каждой из рассмотренных границ и характером линий их пересечения. Соответственно выделяют залежи: • повсеместно оконтуренные внешним контуром нефте- или газоносности; • оконтуренные на разных участках внешним контуром и границей замещения (выклинивания) коллекторов; • оконтуренные внешним контуром и линией дизъюнктивного нарушения. Встречаются залежи, полностью расположенные в границах залегания коллекторов, приуроченные к блоку, со всех сторон ограниченному тектоническими нарушениями, а также залежи с участием всех четырех видов границ. Характер поверхностей, ограничивающих залежь, во многом определяет степень связи залежи с законтурной областью и ее энергетические возможности.
6.6.6. Геологическая неоднородность нефтегазоносных пластов Под геологической неоднородностью понимают изменчивость природных характеристик нефтегазонасыщенных пород в пределах залежи. Геологическая неоднородность оказывает огромное влияние на выбор систем разработки и на эффективность извлечения нефти из недр — на степень вовлечения объема залежи в процессе дренирования. Различают два основных вида геологической неоднородности — макронеоднородность и микронеоднородность. Макронеоднородность отражает морфологию залегания пород- коллекторов в объеме залежи углеводородов, т.е. характеризует распределение в ней коллекторов и неколлекторов. Для изучения макронеоднородности используются материалы ГИС по всем пробуренным скважинам. Надежную оценку макронеоднородности можно получить только при наличии квалифицированно выполненной детальной корреляции продуктивной части разрезов скважин. Особую важность детальная корреляция и изучение макронеоднородности приобретают при расчлененности продуктивных горизонтов непроницаемыми прослоями. Макронеоднородность изучают по вертикали (по толщине горизонта) и по простиранию пластов (по площади). По толщине макронеоднородность проявляется в присутствии в разрезе горизонта нескольких продуктивных пластов и прослоев коллекторов — обычно в разном количестве на различных участках залежей — вследствие наличия мест их слияния, отсутствия в разрезе некоторых пластов, уменьшения нефтенасыщенной толщины в водонефтяной (газовой) части залежи за счет неучета водоносных нижних пластов и др. Соответственно макронеоднородность проявляется и в изменчивости нефтенасыщенной толщины горизонта в целом. По простиранию макронеоднородность изучается по каждому из выделенных в разрезе горизонта пластов-коллекторов. Она проявляется в изменчивости их толщин вплоть до нуля, т.е. наличии зон отсутствия коллекторов (литологического замещения или выклинивания). При этом важное значение имеет характер зон распространения коллекторов. Макронеоднородность отображается графическими построениями и количественными показателями. Графически макронеоднородность по вертикали (по толщине объекта) отображается с помощью профилей (рис. 117) и схем детальной корреляции. По площади она отображается с помощью карт распространения коллекторов каждого пласта (рис. 118), на которых показываются границы площадей распространения коллектора и неколлектора, а также участки слияния соседних пластов. Существуют следующие количественные показатели, характеризующие макронеоднородность пласта по разрезу и по площади: • коэффициент расчлененности, показывающий среднее число пластов (прослоев) коллекторов в пределах залежи; • коэффициент песчанистости, показывающий долю объема коллектора (или толщины пласта) в общем объеме (толщине) залежи;
н Д Д Д И
• коэффициент литологической связанности, оценивающий степень слияния коллекторов двух пластов, Ксв = FCB /FJ, где FCB — суммарная площадь участков слияния; Fee — площадь распространения коллекторов в пределах залежи; • коэффициент распространения коллекторов на площади залежи, характеризующий степень прерывистости их залегания, КРАСП = FK/F/, где /^—суммарная площадь зон распространения коллекторов пласта; • коэффициент сложности границ распространения коллекторов пласта, Ксл = LK0J]/ П, где Ькол — суммарная длина границ участков с распространением коллекторов; П — периметр залежи (длина внешнего контура нефтеносности); • три коэффициента, характеризующие зоны распространения коллекторов с точки зрения условий вытеснения из них нефти: кспл = рспл/рк кпл = рпл/ FK> V FK> где КСПЛ- КПЛ' кл> - ^ответственно коэффициенты сплошного распространения коллекторов, полулинз и линз; F— суммарная площадь зон распространения коллекторов; Fcnj] — площадь зон сплошного распространения, т.е. зон, получающих воздействие вытесняющего агента не менее чем с двух сторон; Fnj] — площадь полулинз, т.е. зон, получающих одностороннее воздействие; FM — площадь линз, не испытывающих воздей- ствия; Кспл + Кпл + Кп = 1. Изучение макронеоднородности позволяет решать следующие задачи при подсчете запасов и проектировании разработки: • моделировать форму сложного геологического тела (пород- коллекторов), служащего вместилищем нефти или газа; • выявлять участки повышенной толщины коллекторов, возникающей в результате слияния прослоев (пластов), и соответственно возможные места перетока нефти и газа между пластами при разработке залежи; • определять целесообразность объединения пластов в единый эксплуатационный объект; • обосновывать эффективное расположение добывающих и нагнетательных скважин; • прогнозировать и оценивать степень охвата залежи разработкой; • подбирать аналогичные по показателям макронеоднородности залежи с целью переноса опыта разработки ранее освоенных объектов. Микронеоднородность продуктивных пластов выражается в изменчивости емкостно-фильтрационных свойств в границах присутствия коллекторов в пределах залежи углеводородов. Промысловой геологией изучается неоднородность по проницаемости, нефтенасыщенности и при необходимости — по пористости. Для изучения микронеоднородности используют данные определения этих параметров по образцам пород и геофизическим данным. Для оценки характера и степени микронеоднородности продуктивных пластов применяют два основных способа — вероятностно- статистический, базирующийся на результатах изучения керна, и графический, использующий данные интерпретации геофизических исследований скважин. Вероятностно-статистические методы обычно применяются при эмпирических гидродинамических расчетах. Из них наиболее распространен метод анализа характеристик распределения того или иного фильтрационно-емкостного свойства пород, слагающих продуктивные пласты. Для количественной оценки микронеоднородности широко используются также числовые характеристики распределений случайных величин, такие как среднее квадратическое отклонение, коэффициент вариации, среднее абсолютное отклонение, вероятное отклонение, энтропия. Графически микронеоднородность отображают на детальных профилях и картах, характеризующих и макронеоднородность. На рис. 119 показано распределение проницаемости по толщине и по линии профиля. В границах залегания пород-коллекторов выделены пять интервалов зон с разной проницаемостью. Видно большое несоответствие зон с различной проницаемостью пластов в плане, что создает сложности для извлечения запасов из всех пластов горизонта при осуществляемой совместной их разработке одной серией скважин.
Поскольку геологический профиль не дает представления об изменении свойств пластов по площади, для каждого из них строят специальную карту. На карту наносят граничные значения изучаемого свойства (проницаемость, пористость и др.) или изолинии значений изучаемого параметра, что позволяет показать их изменение по площади залежи. На рис. 120 приведен фрагмент карты для одного из пластов, на которой показано распространение коллекторов с разной продуктивностью. Из карты следует, что по периферии залежи пласт в основном сложен среднепродуктивными породами, в центре располагается зона высокопродуктивных коллекторов, а по большой части площади залежи без четко выраженной закономерности фиксируются сравнительно небольшие участки с низкопродуктивными или непродуктивными коллекторами и зоны отсутствия коллекторов. Серия таких карт, построенных для всех пластов продуктивного горизонта, дает объемное представление о характере изменения свойств пластов в пределах залежи. Изучение микронеоднородности позволяет: • определять кондиционные пределы параметров продуктивных пород;
• прогнозировать при проектировании разработки характер и темп включения в работу различных частей залежи и соответственно процесс обводнения скважин и добываемой продукции из залежи в целом; • оценивать охват пластов воздействием, выявлять участки, не вовлеченные в разработку, и обосновать мероприятия по улучшению использования недр. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 1575; Нарушение авторского права страницы