Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Характеристика минералов из класса фосфатов.
География и прогноз землетрясений. Регистрация землетрясений. Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись - сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства. Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии - отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки -до секунды или меньше. Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров. Географическое распространение землетрясений. Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии. Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике. Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи. Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта. Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США. Иногда в районах, которые принято считать неактивными, происходят сильные землетрясения, как, например, в Чарлстоне (шт. Южная Каролина) в 1886. По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне - к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка. Прогноз землетрясений. Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды. Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений. Основные этапы истории развития геологических знаний. Историческая геология как наука, ее задачи, методы исследования и практическое значение. ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ (а. historic geology; н. historische Geologie; ф. geologie historique; и. geologia historica) — наука, изучающая историю и закономерности геологического развития Земли. Задачами исторической геологии являются реконструкция и систематизация естественных этапов развития земной коры ибиосферы, выяснение общих закономерностей развития Земли и движущих сил историко-геологического процесса. Историческая геология опирается на данные стратиграфии, палеонтологии, литологии, петрологии, геохимии, тектоники, региональной геологии игеофизики. Особенно тесна связь исторической геологии со стратиграфией, которую иногда рассматривают в качестве её раздела. В исторической геологии используются методы, перечисленных выше специальных дисциплин, в том числе методы установления относительного и радиометрического возраста отложений, актуалистический метод и др.
Историческая геология возникла в начале 19 века на основе использования палеонтологического метода (английский учёный У. Смит, франц. — Ж. Кювье). В 1-й половине 19 века становление исторической геологии происходило под влиянием метафизической теории катастроф (Ж. Кювье, французский учёный А. д'Орбиньи и др.). Во 2-й половине 19 века в исторической геологии большое значение приобрели идеи эволюционного развития Земли (английские учёные Ч. Лайель, Ч. Дарвин), под влиянием которых оформились главнейшие направления исследований. Начало развития исторической геологии в России относится ко 2-й половине 19 века и связано с именами А. П. Карпинского, С. Н. Никитина, А. П. Павлова, Н. И. Андрусова, А. А. Иностранцева и др. В CCCP развитие исторической геологии в 1920-е годы связано с именами А. Д. Архангельского, А. А. Борисяка, Д. В. Наливкина, Н. М. Страхова, Н. С. Шатского и др. Развивается геохимическое направление историко-геологических исследований (В. И. Вернадский А. П. Виноградов). Новое перспективное направление – формационное, принимающее в качестве конкретного предмета исследования крупные категории минеральных масс (формации геологические) и тектонических структур. Современная историческая геология вместе с другими геологическими науками составляет основу собственно геологии (общей геологии), исследуя временные закономерности исторического развития Земли. Прикладное значение исторической геологии определяется использованием ее данных для познания условий генезиса полезных ископаемых и закономерностей размещение их месторождений, что создаёт научную базу поисков и разведки последних. Характеристика геохронологической и стратиграфической шкал. Стратиграфическая шкала – шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой. Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время. Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы
При этом практически все стратиграфические подразделения крупнее яруса имеют единые общепринятые международные наименования. Наиболее крупными стратиграфическими подразделениями являются эонотемы. Эонотема - это отложения, образовавшиеся на протяжении самой крупной геохронологической единицы - эона, длительностью которого составляет сотни миллионов и более лет. Выделяют три эонотемы: архейскую, протерозойскую и фанерозойскую. Архейскую и протерозойскую эонотемы объединяют под названием «докембрий» (т. е. толщи пород, накопившиеся до кембрийского периода – первого периода фанерозоя) или «криптозой». Рубежом докембрия и фанерозоя служит появление в слоях горных пород остатков скелетных организмов. В докембрии органические остатки редки, поскольку мягкие ткани быстро разрушаются, не успев захорониться. Сам термин «криптозой» образовано при слиянии корней слов «криптос» - скрытый и «зоэ» - жизнь. При расчленении докембрийских толщ на эонотемы и более дробные стратиграфические подразделения важнейшую роль имеют методы изотопной геохронологии, поскольку органические остатки редки или вообще отсутствуют, определяются с трудом и, главное, не подвержены быстрой эволюции (однотипные комплексы микрофауны остаются неизменными на протяжении огромных интервалов времени, что не позволяет расчленять толщи по этому признаку). Эонотемы включают в свой состав эратемы. Эратема, или группа - отложени, образовавшиеся в течение эры; продолжительность эр в фанерозое составляет первые сотни миллионов лет. Эратемы отражают крупные этапы развития Земли и органического мира. Границы между эратемами соответствуют переломным рубежам в истории развития органического мира. В фанерозое выделяют три эратемы: палеозойскую, мезозойскую и кайнозойскую. Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская,, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы. Отдел - часть системы, соответствующая отложениям, образовавшимся в течение одной эпохи; длительность эпох обычно составляет первые десятки миллионов лет. Отличия между отделами проявляются в различии фауны и флоры на уровне родов или групп. Названия отделов даны по положению их в системе: нижний, средний, верхний или только нижний и верхний; эпохи соответственно называют ранней, средней, поздней. В составе отдела выделяются ярусы. Ярус - отложения, образовавшиеся в течение века; продолжительность веков составляет несколько миллионов лет. Решающим критерием для выделения яруса и обоснования его границ служат данные биостратиграфического анализа: каждый ярус характеризуется только ему присущими родами и видами организмов. В составе ярусов иногда выделяют подъярусы: нижний, средний и верхний или только нижний и верхний. Зона является частью яруса и охватывает отложения, образовавшиеся в течение одной фазы, продолжительность около 1-3 млн. лет. Зона выделяется по комплексу видов быстро эволюционировавших ископаемых организмов, Название зоны и соответствующей фазы дается по наиболее характерному виду ископаемых организмов (вида-индекса). В составе четвертичной системы выделяется специфичное стратиграфическое подразделение – звено. В звено объединяют горные породы, сформированные во время одного цикла климатических изменений: похолодания (ледниковье) и потепления (межледниковье). Временным аналогом звена в геохронологической шкале является пора. Четвертичная система включает четыре звена: нижнее-, среднее-, верхнее и современное. Необходимость выделения пор и звеньев связана со специфичностью четвертичного периода, заключающейся в следующем: малая длительность периода (1, 65 млн. лет), объясняемая его незавершённостью; присутствие в отложениях четвертичной системы останков человека и следов его материальной культуры; резкие и многократные изменениями климата; повсеместное распространение четвертичных отложений на суше и дне морей и океанов, быстрое изменение их литологического состава и небольшая мощность. Нужно отметить, что при расчленении четвертичных отложений используются два подхода: климатостратиграфический и биостратиграфический. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 593; Нарушение авторского права страницы