Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Биофизика процессов транспорта веществ через биомембраны



Раздел 13

1)Функции биомембран. Барьерная функция биомембран.

Биомембраны и их составляющие выполняют следующие функции:

1. Ограничение и обособление клеток и органелл. Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий. Плазматическая мембрана обеспечивает также сохранение разности концентраций метаболитов и неорганических ионов между внутриклеточной и внешней средой.

2. Контролируемый транспорт метаболитов и ионов определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров. Регулируемый и избирательный транспорт метаболитов и неорганических ионов через поры и посредством переносчиков (см. с. 214) становится возможным благодаря обособлению клеток и органелл с помощью мембранных систем.

3. Восприятие внеклеточных сигналов и их передача внутрь клетки (см. сс. 372, 374), а также инициация сигналов.

4. Ферментативный катализ. В мембранах на границе между липидной и водной фазами локализованы ферменты. Именно здесь происходят реакции с неполярными субстратами. Примерами служат биосинтез липидов и метаболизм неполярных ксенобиотиков (см. с. 308). В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование и фотосинтез.

5. Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при слиянии клеток и образовании тканей.

6. Заякоривание цитоскелета , обеспечивающее поддержание формы клеток и органелл и клеточной подвижности.

Барьерная функция - обеспечивает селективный, регулируемый, пассивный и активный обмен веществом с окружающей средой (селективный – значит, избирательный: одни вещества переносятся через биологическую мембрану, другие- нет; регулируемый – проницаемость мембраны для определенных веществ меняется в зависимости от функционального состояния клетки).

Биофизика процессов транспорта веществ через биомембраны

Транспорт веществ через мембраны подразделяется на активный и пассивный. Пассивный транспорт всегда идёт по градиенту электрохимического потенциала до тех пор, пока разность потенциалов не будет равна нулю. Активный транспорт идёт против градиента потенциала, приводит к росту мембранного потенциала и использует внешние источники энергии. Химический потенциал – это величина, численно равная энергии Гиббса для 1 моль вещества при постоянных давлении и температуре. Электрохимический потенциал учитывает заряд частиц, помещённых в постоянное электрическое поле.

В условиях равновесия, электрохимические потенциалы двух растворов равны:

Из этого соотношения можно получить формулу Нернста для равновесного потенциала:

В дальнейшем, Ходжкин вывел формулу для потенциала, создаваемого несколькими ионами:


 

Уравнение Фика

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то выше приведённую формулу можно заменить на следующую:

Знак «–» показывает, что суммарная плотность потока вещества при диффузии направлена в сторону уменьшения плотности, D –коэффициент диффузии. Формула показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D и градиенту концентрации. Это уравнение выражает первый закон Фика (Адольф Фик — немецкий физиолог, установивший законы диффузии в 1855 г.).

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D и градиенту концентрации. Это уравнение выражает первый закон Фика (Адольф Фик — немецкий физиолог, установивший законы диффузии в 1855 г.). Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Процессы диффузии имеют большое значение в природе:

Питание, дыхание животных и растений;

Проникновение кислорода из крови в ткани человека.


 

Электродиффузионное уравнение Нернста-Планка

Поток вещества через мембрану подчиняется уравнению Теорелла:

Подставив сюда уравнение для электрохимического потенциала получаем:

Последнее выражение и есть уравнение Нернста-Планка, оно показывает две причины переноса веществ через мембрану: градиент концентрации и градиент электрического потенциала.

Подход Планка-Гендельсона предполагал электронейтральность мембраны и равенство концентраций катионов и анионов по разные стороны мембраны. Следовательно, равенство потоков катионов и анионов, тогда

Гольдман предположил линейность электрохимического потенциала в толще мембраны:

Тогда решение уравнения для концентраций иона на краях мембраны будет таким:

Ходжкин в дальнейшем предположил, что концентрации ионов на краях мембраны пропорциональны концентрациям в соответствующих растворах.

Тогда Уравнение Гольдмана преобразуется

коэффициент проницаемости.


 

8)Ионный транспорт через каналыТипы каналов, основные свойства ионных каналов.

Ионные каналы - это специальные поры (дырочки) в мембране, образованные канальными белками, позволяющие ионам проходить через мембрану в обоих направлениях: как внутрь, так и наружу.

Из всех наиболее важными являются два типа: ионные каналы с лиганд-зависимыми воротами (находятся в постсинаптической мембране нервно-мышечных соединений) и ионные каналы с потенциал-зависимыми воротами. Первые превращают химические сигналы, приходящие в клетку, в электрические, они необходимы для работы синапсов, а вторые нужны для распространения потенциала действия.

Свойства ионных каналов

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого — только ионы натрия и т. д.

Селективность — это избирательно повышенная проницаемость ионного канала для определённых ионов и пониженная для других. Такая избирательность определяется селективным фильтром — самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд.

Управляемая проницаемость — это способность открываться или закрываться при определённых управляющих воздействиях на канал.

Инактивация — это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

Блокировка — это способность ионного канала под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками.

Пластичность — это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность — этофосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами.

 

 


 

Раздел 14

Потенциал покоя

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0, 06-0, 09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают.


 

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия.

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого " натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью " натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

Раздел 13

1)Функции биомембран. Барьерная функция биомембран.

Биомембраны и их составляющие выполняют следующие функции:

1. Ограничение и обособление клеток и органелл. Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий. Плазматическая мембрана обеспечивает также сохранение разности концентраций метаболитов и неорганических ионов между внутриклеточной и внешней средой.

2. Контролируемый транспорт метаболитов и ионов определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров. Регулируемый и избирательный транспорт метаболитов и неорганических ионов через поры и посредством переносчиков (см. с. 214) становится возможным благодаря обособлению клеток и органелл с помощью мембранных систем.

3. Восприятие внеклеточных сигналов и их передача внутрь клетки (см. сс. 372, 374), а также инициация сигналов.

4. Ферментативный катализ. В мембранах на границе между липидной и водной фазами локализованы ферменты. Именно здесь происходят реакции с неполярными субстратами. Примерами служат биосинтез липидов и метаболизм неполярных ксенобиотиков (см. с. 308). В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование и фотосинтез.

5. Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при слиянии клеток и образовании тканей.

6. Заякоривание цитоскелета , обеспечивающее поддержание формы клеток и органелл и клеточной подвижности.

Барьерная функция - обеспечивает селективный, регулируемый, пассивный и активный обмен веществом с окружающей средой (селективный – значит, избирательный: одни вещества переносятся через биологическую мембрану, другие- нет; регулируемый – проницаемость мембраны для определенных веществ меняется в зависимости от функционального состояния клетки).

Биофизика процессов транспорта веществ через биомембраны

Транспорт веществ через мембраны подразделяется на активный и пассивный. Пассивный транспорт всегда идёт по градиенту электрохимического потенциала до тех пор, пока разность потенциалов не будет равна нулю. Активный транспорт идёт против градиента потенциала, приводит к росту мембранного потенциала и использует внешние источники энергии. Химический потенциал – это величина, численно равная энергии Гиббса для 1 моль вещества при постоянных давлении и температуре. Электрохимический потенциал учитывает заряд частиц, помещённых в постоянное электрическое поле.

В условиях равновесия, электрохимические потенциалы двух растворов равны:

Из этого соотношения можно получить формулу Нернста для равновесного потенциала:

В дальнейшем, Ходжкин вывел формулу для потенциала, создаваемого несколькими ионами:


 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 990; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.037 с.)
Главная | Случайная страница | Обратная связь