Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ВОПРОС 3.Определение несущей способности свай различными способами.
Несущую способность сваи обычно определяют, учитывая условия работы материала, служащего для ее изготовления, а также особенности грунта, куда обычно погружается свая. Вот почему сопротивление сваи действию нагрузки в вертикальном положении считают наименьшей величиной, используемой при вычислении, в ходе которого учитывают условия прочности материала сваи и грунта. Прочность материала для изготовления сваи, механические свойства грунта и метод ее погружения оказывают влияние на несущую способность одиночной сваи. Следует отметить и то, что, независимо от вида одиночных свай, на их несущую способность влияют лишь два условия. А именно: сопротивление грунта основания сваи и сопротивление материала, из которого она изготовлена. Методы определения несущей способности сваи: 1.Расчетный метод (не очень эффективный). 2.Пробные статистические нагрузки. Весьма эффективная методика, но требующая высоких затрат материальных средств и времени. 3.Динамическое испытание. Осуществляется посредством нескольких ударов свайного молотка по установленным сваям, а затем фиксируется ее осадка. Данный метод хорошо тем, что его можно применять прямо на объекте, но он не так точен, как предыдущий. 4.Зондирование. Этот метод включает комплексное применение статического и динамического методов. Его суть состоит в регистрации нагрузок на поверхность и на основание посредством установленных датчиков. Расчетный метод Сваи-стойки могут потерять несущую способность либо в результате разрушения грунта под ее нижним концом, либо в результате разрушения самой сваи, т.е. такую сваю необходимо рассчитывать: по прочности материала ствола сваи и по условию прочности грунта под ее нижним концом. За несущую способность принимается меньшая величина. По прочности материала свая-стойка рассчитывается как центрально нагруженный сжатый стержень, без учета поперечного изгиба.
Для железобетонных свай формула расчета несущей способности по материалу выглядит следующим образом: γ с – коэффициент условий работы, для свай сечением менее 0, 3× 0, 3м γ с=0, 85; для свай большего сечения γ с=1; γ m – коэффициент условий работы бетона (0, 7…1 – в зависимости от вида свай); Rb – расчетное сопротивление бетона осевому сжатию, зависит от класса бетона (кПа); A – площадь поперечного сечения сваи, м2; γ a – коэффициент условий работы арматуры, γ a =1; Rs – расчетное сопротивление сжатию арматуры (кПа); As – площадь поперечного сечения арматуры, м2. Несущая способность сваи-стойки по грунту определяется по формуле: где γ с – коэффициент условий работы сваи в грунте, γ с=1; R – расчетное сопротивление грунта под нижним концом сваи, кПа А – площадь опирания сваи на грунт, м2.
Висячие сваи Их расчет производится, как правило, только по прочности грунта, т.к. по прочности материала она всегда заведомо выше. Существуют следующие методы расчета: · Динамический метод; · Метод испытания пробной статической нагрузкой; · Метод статического зондирования;
Динамический метод заключается в определении несущей способности сваи по величине ее отказа на отметке близкой к проектной. В основу метода положено, что работа, совершаемая свободно падающим молотом, GH (где G – вес молота, H – высота падения молота) затрачивается на преодоление сопротивления грунта погружению сваи; на упругие деформации системы «молот-свая-грунт»; на превращение части энергии в тепловую; разрушение головы сваи и т.п., т.е. на неупругие деформации. В общем виде эта зависимость записывается следующим образом: где G∙ H – работа падающего молота; Fu∙ Sa – работа на погружение; G∙ h – работа на упругие деформации; α ∙ G∙ H – работа на неупругие деформации; Fu – предельное сопротивление сваи вертикальной нагрузке, кН; Sa – отказ сваи, м; Α – коэффициент, учитывающий превращение части энергии в тепловую и т.п. Отказ сваи (Sa) определяется либо по одному удару молота, либо, что чаще, вычисляется как среднее арифметическое значение погружения сваи от серии ударов, называемой залогом (число ударов от 4-х до 10).
Метод испытания свай статической нагрузкой. Несмотря на сложность, длительность и значительную стоимость этот метод позволяет наиболее точно установить предельное сопротивление сваи с учетом всех геологических и гидрогеологических условий строительной площадки Метод используется либо с целью установления предельного сопротивления сваи, необходимого для последующего расчета фундамента, либо с целью проверки на месте несущей способности сваи, определенной каким-либо другим методом, например, практическим. Проверке подвергаются в среднем до 1% от общего числа погруженных свай, но не менее 2-х. Схема испытания выглядит следующим образом: Нагрузка прикладывается ступенями, равными от ожидаемого предельного сопротивления сваи. Каждая ступень выдерживается до условной стабилизации осадки сваи. Осадка считается условно стабилизировавшейся, если ее приращение не превышает 0, 1мм за 1 час наблюдения для песчаных грунтов и за 2 часа для глинистых. По данным испытаний строятся два графика: Практика показала, что графики испытаний свай делятся на два типа (рис. 1.13б): · с характерным резким переломом, после которого осадка непрерывно возрастает без увеличения нагрузки, данная нагрузка в этом случае и принимается за предельную; · с плавным очертанием без резкого перелома, что затрудняет определение предельной нагрузки. В этом случае за предельную принимается та нагрузка, под воздействием которой испытываемая свая получила осадку S=ζ ∙ Su где ζ – переходной коэффициент, комплексно учитывает ряд факторов: несоответствие между осадкой одиночной сваи и сваи в кусте, кратковременность испытания (главный фактор) по сравнению с длительностью эксплуатации здания и т.п., принимается равным ζ =0, 2; Su, mt – предельное значение средней осадки фундамента проектируемого здания (по СНиП 2.02.01-83*). В итоге расчетная нагрузка на сваю по результатам статических испытаний: где γ с – коэффициент условий работы; γ g – коэффициент надежности по нагрузке; Fu – частное значение, т.е. нормативное значение.
Метод статического зондирования грунтов - более дешевый и быстрый метод по сравнению с испытанием свай статическими нагрузками. Заключается во вдавливании в грунт стандартного зонда, состоящего из штанги с конусом на конце (dкон = 36 мм, F = 10 см2, < заострения 60º ). Конструкция зонда позволяет как общее сопротивление его погружения, так и величину лобового сопротивления конуса. Так как характер деформации грунтов при вдавливании свай и зонда аналогичен, полученные данные можно использовать для определения предельных сопротивлений свай. Fd = AR+ f·h·U f = B2·fз ; AR - сопротивление острия зонда R = B1·qз ; h - длина сваи B1 B2 – переходные коэффициенты учитывающие разные размеры зонда и сваи. Наряду с зондами для определения НС свай используются также эталонные сваи сечением 10х10 см двух типов – для измерения сопротивления грунта только под острием эталонной сваи, а второй – под острием и по ее боковой поверхности |
Последнее изменение этой страницы: 2017-03-15; Просмотров: 431; Нарушение авторского права страницы