Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Измерение концентрации растворов



Автоматический непрерывный контроль жидкостей осуществляется измерительными устройствами, монтируемыми непосредственно в технологическом аппарате или в трубопроводе, при соблюдении следующих условий: измерительное устройство должно иметь термокомпенсацию или контролируемая среда должна находиться в изотермических условиях и не менять своего физического состояния; первичный измерительный преобразователь, погруженный в измеряемую среду, не должен создавать в ней застойные зоны. В противном случае датчик анализатора следует установить вне технологического аппарата, применяя специальные пробоотборные устройства.

Широко применяются традиционные автоматические анализаторы состава технологических жидкостей, использующие кондуктометрический, потенциометрический, денсиметрический и ультразвуковой методы.

Примечание

Разработка автоматических систем отбора и подготовки проб с микропроцессорным управлением получения и обработки информации позволила значительно развить вискозиметрический, ультразвуковой, титрометри-ческий и другие методы.

10.2.1. Кондуктометрические анализаторы

Принцип действия кондуктометрического анализатора основан на зависимости удельной электрической проводимости раствора от количества и природы содержащихся в растворе веществ. Широкое распространение получили контактные кондуктометрические анализаторы. Их чувствительный элемент представляет собой электродную ячейку, погруженную в измеряемый раствор, с помощью которой измеряется его электрическая проводимость, зависящая от состава и количества находящихся в нем веществ.

Двухэлектродные ячейки применяют для анализа чистых разбавленных растворов с удельной электрической проводимостью до Ю~5 См/м и в сигнализаторах, когда не требуется достижения высокой точности измерения. В трехэлектродной ячейке внешние электроды соединены между собой и вместе с внутренним электродом образуют две параллельно включенные двухэлектродные ячейки. В такой ячейке незначительны внешние наводки. В четырехэлектродной ячейке переменное напряжение подводится к двум крайним электродам, между которыми в растворе протекает ток. Два внутренних электрода служат для измерения падения напряжения, которое создает ток на участке раствора между ними. Четырехэлектродные ячейки применяют для анализа чистых растворов с удельной электрической проводимостью до См/м.

Этот способ используют при измерения концентрации электролитов.

Электропроводность гомогенных многокомпонентных жидких смесей в первом приближении подчиняется правилу аддитивности:

где — удельная электропроводность жидкой смеси, См/м; — молярная доля компонента ; — удельная электропроводность компонента в жидкой смеси; — число компонентов-электролитов в растворе.

Электропроводность дисперсных систем, составленных из электропроводной сплошной фазы и неэлектропроводной дисперсной фазы, зависит от концентрации неэлектропроводных диспергированных частиц.

Электропроводность неоднородной гетерогенной среды не подчиняется правилу аддитивности, и ее определяют экспериментально.

Проводя измерение электропроводности жидких растворов (изменяется только концентрация определяемого компонента), измерение электропроводности гетерогенных систем (суспензии, эмульсии и т. д.), у которых изменяется только содержание дисперсной фазы, возможно непрерывно контролировать изменение концентрации определяемого компонента.

Кондуктометрические датчики, как правило, устанавливают в технологических аппаратах и трубопроводах, при этом специальная подготовка пробы к измерениям не нужна.

10.2.2. Потенциометрические анализаторы

Потенциометрический метод основан на измерении электродных потенциалов, функционально связанных с концентрацией (активностью) определяемого вещества в растворе. Электроды представляют собой окислительно-восстановительные системы. Измеряемый потенциал отвечает равновесному состоянию, установившемуся на электроде между окисленной и восстановленной формой определяемого вещества, и в общем виде может быть определен по уравнению Нернста:

где Е — электродный потенциал, В; — стандартный электродный потенциал — потенциал электрода, измеренный в стандартных условиях (25 °С, 101, 325 кПа, ), В; п — число электронов, обменивающихся между окисленной и восстановленной формами вещества; — универсальная газовая постоянная; Т — абсолютная температура, К; — постоянная Фарадея; — активность окисленной и восстановленной форм вещества соответственно, моль/л.

Абсолютное значение электродного потенциала (5.115) непосредственно измерить нельзя, для его измерения применяют гальванический элемент, в котором один электрод является индикаторным (измерительным), а другой — электродом сравнения. Индикаторный электрод помещают в контролируемую жидкую среду. Потенциал индикаторного электрода определяется концентрацией (активностью) ионов в растворе. В качестве электрода сравнения используют стандартные электроды (например, металлический электрод, помещенный в насыщенный водный раствор соли), имеющие постоянный потенциал . Потенциал электрода сравнения зависит от температуры, поэтому его располагают в контролируемой среде в непосредственной близости от индикаторного электрода (или в специальном неметаллическом сосуде с раствором электролита). Электрический контакт электрода сравнения с контролируемой средой в последнем случае реализуется через практически непроточный ключ.

ЭДС гальванической цепи, составленной из индикаторного электрода и электрода сравнения, помещенных в контролируемую жидкую среду, составит

Рис. 111. Ионоселективные электроды:

а — стеклянный мембранный электрод; металлические электроды с напыленным слоем металла (б), проволочный (в), точечный (г); д — электрод с твердой мембраной

Потенциометрический метод применяется для измерения концентраций кислот, оснований, солей в водных и неводных средах, а также для контроля рН водных растворов прямым потенциометрическим измерением. Возможности потенциометрического метода расширились с появлением ионоселективных электродов (рис. 111). В конструкцию такого электрода входит мембрана, проницаемая только для определяемого иона, тем самым обеспечивается избирательный анализ одних ионов в присутствии других. В стеклянном мембранном электроде (рис. 111, а) ионообменной мембраной служит шарик из стекла определенного сорта, припаянного к стеклянной трубке. Трубка заполнена стандартным (внутренним) раствором с постоянной активностью ионов водорода, и в нее опушен проводник — серебряная проволока. Разность потенциалов между стеклянной ионообменной мембраной и внутренним полуэлементом (система проводник—внутренний раствор) составляет потенциал стеклянного электрода. В состав стеклянной ионообменной мембраны входят атомы натрия, способные к активному электрохимическому обмену с контролируемой средой при рН > 10. При рН > 12, вследствие интенсивного электрохимического обмена, электрод «выщелачивается».

Металлические индикаторные электроды с напыленным слоем металла на нейтральную поверхность (рис. 111, б), проволочный (рис. 111, в) или припаянный одним концом к нейтральной поверхности в виде капли — точечный (рис. 111, г) в контролируемой среде вступают в электрохимическое взаимодействие с ионами, присутствующими в этой среде. Электродный потенциал, устанавливающийся на индикаторном электроде, обусловлен совокупностью процессов, протекающих при этом, в том числе коррозией металла в контролируемой среде. Поэтому наибольшей селективностью при потенциометрическом контроле многокомпонентных технологических сред обладают индикаторные электроды, изготовленные из благородных металлов (платина, золото, иридий и т. д.). На рис. 111, д представлен индикаторный ионоселективный электрод с разделительной твердой мембраной (кристалл, пленка, таблетка), выполняющий ту же функцию, что и стеклянный шарик в стеклянном мембранном электроде.

Замечание

В настоящее время большое внимание уделяется разработке химических сенсоров на основе ионоселективных полевых транзисторов.

Автоматический потенциометрический контроль технологических водных низкоконцентрированных растворов и суспензий используется для управления процессами нейтрализации и для автоматического поддержания заданного интервала значений рН и рХ (X — ион) в технологических средах.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 626; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь