Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предмет и задачи микробиологии.



Предмет и задачи микробиологии.

Микробиология (от греч. mikros – малый, bios – жизнь, logos - учение) изучает строение, жизнедеятельность, закономерности и условия развития мельчайших орг-ов, использование их полезных св-в и устранение вредных. Различают: общую (изучает основные закономерности развития и жизнедеятельности м/о и их роль в природе; является основой для других направлений), медицинскую (изучает патогенные для человека м/о, разрабатывает методы профилактики, диагностики и лечения болезней), ветеринарную, сельскохозяйственную (изучает роль м/о в почвообразовательных процессах, увеличение плодородия почвы и т.д.), техническую (изучает научные основы использования д-ия м/о в пром-ти с целью создания полезных продуктов, разрабатывание методов предохранения разл. сырья от порчи), водную (изучает микрофлору разл. водоемов, питьевой воды, роль м/о при очистке сточных вод), экологическую и др. микробиологии. Объектами исследования являются бактерии (бактериология), вирусы (вирусология), грибы (микология), водоросли (альгология) и т. д. Задачи: 1) получение высокоактивных штаммов; 2) изучение закономерностей смешанного культивирования (Z.B. получение биотоплива, очистка сточных вод, получение антибиотиков и витаминов); 3) защита высокоактивных штаммов от бактериофагов; 4) разработка методов сохранения высокопродукт. штаммов м/о (морозильная (-270о), сушка, пересев).

 

Общая характеристика микроорганизмов.

I. Роль: 1) Круговорот биогенных элементов (круговорот в-в в природе C, N, O, H, CO2, P, S); 2) Санитары планеты (разложение отмерших орг-ов, освобождает среду от токсичных в-в H2S, CH4 и др.) 3) Геохимические процессы (формирования месторождений нефти, Сu, железосодержащих руд, серы, фосфоритов). Место: М/о различаются по способу питания: С-гетеротрофный (орг. в-ва), С-автотрофный (неорг. в-ва). Э. Геккель (1866 г.): царство протисты (простейшие): 1) высшие (грибы, микроводоросли), 2) низшие (синезеленые водоросли, бактерии); Р. Станнер, К. ван Ниль: деление на прокариот (низшие – одна внутренняя полость); эукариот (высшие – много полостей, органеллы в клетке). Виттекер (1969 г.) monera (прокариоты – 3, 5 млрд. лет)Þ Protista (простейшие – 900 млн. лет)Þ 1) растения (фототрофное – питание посредством фотосинтеза); 2) животные (фагоцитарное – питание твердыми частицами орг. в-ва); 3) грибы (осмотрофное – питание готовыми растворенными орг. в-вами).

II. Св-ва: 1) микроскопические размеры (1мкм) – в 1г бактериальной массы – 1012 бакт. клеток; 2) Быстрый обмен в-в через цитоплазматическую мембрану. Правило Рубмера: энергетический обмен клетки пропорционален пов-ти клетки, а не объему. 3) Общие методы исследования и культивирования (микроскопические методы).

III. Виды и размеры

Группы Размеры
Эукариоты Прстейшие Микроводоросли Грибы Дрожжи   100-300 10-100 5-10 мкм 3-5*10
Прокариоты Бактерии   0, 1-5мкм
Неклеточн. Строение Вирусы Бактериофаги   20-300нм 20-300нм
Молекула белка Диаметр 3-13 нм 0, 1нм

IV. Распространение: Могут занимать любые экологические ниши, не связаны с ареалом: почва, вода, воздух.

 

Основные этапы развития микробиологии.

1) Открытие в 1676г. Антонием ван Левенгуком; изготовление линз, увеличивающих в 200-300 раз. В книге «Тайны природы, открытые Антонием Левенгуком» описал и зарисовал многие м/о, обнаруженные в различных настоях, в колодезной воде, на мясе и др. объектах. Открытие Левенгука вызвали интерес ученых, но слабое развитие в XVII и XVIII вв. пром-ти и с/х, господствующее в науке схоластическое направление препятствовали развитию естественных наук Þ долгое время наука о м/о носила описательный характер. Важное принципиальное значение имеют малоизвестные работы М. М. Тереховского (диссертация 1775 г.), он изучал влияние на м/о охлаждения и нагревания, действия различных хим. в-в; он считал, что м/о представляют собой особую группу живых существ, которые не способны самопроизвольно зарождаться.

2) Прогресс пром-ти в XIX в., вызвавший развитие техники и разл. отраслей естествознания, обусловил развитие микробиологии, возросло ее практическое значение. Она стала опытной наукой, изучающей роль «загадочных» орг-ов в природе и жизни человека. Появились более совершенные микроскопы. Луи Пастер (1822-1895) показал, что м/о различаются не только внешним видом, но и хар-ром жизнедеятельности; они вызывают разнообразные хим. превращения в субстратах, на которых развиваются; он изучал разл. виды брожения (спиртовое, маслянокислое), доказал существование анаэробных орг-ов, доказал, что жизнь может произойти только от другой жизни. Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843-1910). Им были введены в практику плотные пит. среды для выращивания м/о; это позволило разработать методы выделения (изолирования) м/о в «чистые культуры», т. е. культуры каждого вида в отдельности, развившиеся в одной клетке. Изучал возбудителей сибирской язвы, туберкулеза, холеры и др. заразных болезней; ввел методы окраски м/о анилиновыми красителями. В 1905 – нобелевская премия. Л. С. Ценковский (1822-1877) изучал генетические связи протистов, низших водорослей, слизистых грибов и бактерий с животными и растениями. Он впервые в России изготовил и применил на практике вакцину против сибирской язвы овец. И. И. Мечников (1845-1916) разработал фагоцитарную теорию иммунитета - невосприимчивости организма к заразным болезням. Ему принадлежит идея использования антагонистических отношений между м/о, что легло в основу современного учения об антибиотиках; с ним связано развитие микробиологии в России; он организовал первую в России бактериологическую лабораторию (в Одессе). В 1903 – нобелевская премия. Н. Ф. Гамалея (1859 - 1949) изучал вопросы медицинской микробиологии; открыл станцию по прививкам против бешенства; описал явление бактериофагов.

3) Эколого-физиологическое направление. С. Н. Виноградский (1856-1953) открыл процесс нитрификации – окисление аммонийного азота до азотной кислоты при участии особой группы бактерий, эти бактерии не нуждаются для своего роста в готовых органических соединениях; они ассимилируют CO2 без участия хлорофилла и солнечной энергии (хемосинтез). Открыл явление фиксации атмосферного азота анаэробными бактериями; найдены бактерии анаэробного разложения пектиновых в-в. Открыл новый вид жизни хемолитоавтотрофный: СО2-источник углерода; Fe, S, H2- источник энергии. Вместе с Мартином Бейеринком (1851-1931) открыли метод элективных сред (среды подходят только для одного вида м/о, а для др. нет). Бейеринк открыл клубеньковые бактерии. Они изучали м/о в природных условиях, в основном в почве. Д. И. Ивановский в 1892 г. открыл вирусы (вирус табачной мозаики).

4) Биохимическое направление. А. Клюйер (1888-1956); К. ван Ниль. Принцип биохимического единства жизни: а) единство конструктивных процессов; б) единство энергетических процессов; в) единство хранения и передачи генетической информации.

 

 

Микроводоросли

Это микроскопические растения. Эукариоты, клет. стенка из целлюлозы, имеют хлоропласты, содержащих набор пигментов для фотосинтеза CO2 + H2O à (CH2O)n + O2. 1) Дешевый источник белка и витаминов. 2) Удобная модель для изучения фотосинтеза. В природе встречаются в пресной и соленой воде, в основном это свободноживущие орг-мы, некоторые образуют симбиоз (водоросли + беспозвоночные ≈ губки, коралловые полипы); встречаются на суше: поверхностные слои почвы и кора деревьев. Составляют основную массу планктона. 4 цвета хлоропластов: хлорофилл – зеленый, фикоциан – синий, фикаэритрин – красный, фикокеантит – золотисто-бурый. 1) Зеленые водоросли Chlorella и Scenedesmus. 2) Красные 3) Бурые 4) Золотистые и др. Dunaliella (накапливает много глицерина и белка – для корма крабов, моллюсков…) Spirulina (цианобактерия). Водоросли выращивают в прудах 1-1, 5 м глубиной, добавляют соли азота, продувают CO2 – для получения белка (Эффективен для жарких стран). Значение: 1) Отрицательное – цветение водоемов. 2) Экологическое – участие в процессах самоочищения (Выделяют O2 для бактерий, поглощающих орг-ое в-во; поля фильтрации и орошение). 3) Получение биомассы и биологически активных в-в (планктон). 4) Жизнеобеспечение в замкнутом пр-ве (600 грамм биомассы в сутки – пища, кислород).

 

Дрожжи.

Одноклеточные, неподвижные орг-мы: (3-5)*(8-10) мкм; форма округлая, овально-яйцевидная, эллипсоидальная, редко цилиндрическая или лимонообразная; она может меняться в зависимости от условий среды. Дрожжи относятся к грибам, но истинного мицелия не дают, у некоторых есть псевдомицелий. Размножение: вегетативное (почкование) и половое. Распространение: в почве, на плодах и листьях растений. Представители и применение: Saccharomyces cerevisiae – в пр-ве спирта, в пивоварении, квасоварении, хлебопечении; vini – в виноделии; lactis – спиртовое брожение в кисломолочных продуктах; Candida – «кормовые дрожжи», образуют пленки на спиртных напитках, на пов-ти квашенных овощей, в бродильных аппаратах; Torulopsis kefirii – пр-во кумыса и кефира, «кормовые дрожжи».

 

 

Строение клетки эукариотов

Цитоплазма – коллоидный р-р аминокислот, углеводов, мин. солей в воде (50-60% объема клетки); вязкость превышает вязкость воды в 800 раз; Митохондрии явл. «силовыми станциями» клетки; Рибосомы – органеллы, в которых происходит синтез белка; Лизосомы содержат ферменты, расщепляют чужие биополимеры, обязательно окружены мембраной (Автолиз – самопереваривание клетки, когда клетка старая: разрушаются мембраны); Аппарат Гольджи – упаковка ненужных в-в и транспорт их из клетки через мембрану; Эндоплазматическая сеть связывает ядро с рибосомами, это сложная сис-ма взаимосвязанных каналов, пронизывающих всю толщу клеток (гладкая, шероховатая – связана с рибосомами). Клетка представляет собой сис-му из 2х несмешивающихся между собой фаз: водной (цитоплазма со всеми переходами) и мембранной сис-мой (относительно жидкая, липопротеиновая фаза, которая пронизывает всю цитоплазму).

 

Строение клетки прокариотов

Цитоплазма полужидкая, вязкая, коллоидная масса, в нее входят белки, нуклеиновые к-ты, липиды, вода; Цитоплазматическая мембрана обладает полупроницаемостью, богата липидами и ферментами; Рибосомы – синтез белка; Мезосомы – энергетические процессы: окисление орг. в-в, синтез энергозапасающих в-в (АТФ); различные включения, являющиеся запасными пит. в-вами (гликоген, волютин); Ядро отсутствует, но имеется большое кол-во ядерного в-ва, в частности дезоксирибонуклеиновой к-ты (ДНК); Слизистый чехол (полисахариды) – необязательный компонент клетки, предохраняет от высыхания, от мех-ого повреждения, д-ия хим. агентов и лекарственных в-в; Клеточная стенка (также необязательна) состоит из муреинового комплекса (гликопептиды).

 

 

Бактерии

Главным образом одноклеточные, иногда образуют нити и колонии; относятся к растительному миру, но не имеют хлорофилла. Морфология: 1) Шаровидные – кокки (микрококки, диплококки, тетракокки, стрептококки, сарацины стафилококки); 2) Палочковидные - цилиндрические (одиночные, диплобактерии, стрептобактерии); 3) Извитые – изогнутые (вибрионы, спириллы, спирохеты); Некоторые бактерии меняют форму в зав-ти от стадии развития – плеоморфизм. Размножение: путем деления клетки пополам, при этом в средней части клетки образуется перегородка, которая, расщепляясь, разделяет клетку на 2 новые. Спорообразование служит для перенесения неблагоприятных условий; спора покрыта спец. в-вом: дипикалиновой к-той, все в-во сгущается в центре и занимает объем в 10 раз меньше, чем объем самой клетки, в споре мало воды, белок находится в спец. состоянии, спора может выдержать нахождение в H2SO4. В благопр. условиях споры набухают вследствие поглощения воды и прорастают в вегетативные клетки, происходит растворение или разрыв внешн. оболочки и молодая бактерия выходит наружу. Способы движения 1) Жгутики – спирально извитые тонкие белковые нити, способные сокращаться: а) монотрихи – 1 жгутик, б) лофотрихи – пучком, в) перитрихи – на всей пов-ти тела; 2) Скольжение (по твердому или полутвердому экстракту) – имеется спец. слой белка, который может сокращаться по типу бегущей волны (с выделением слизи или без нее); 3) Таксисы – направленное движение бактерий: а) хемотаксисы – в сторону необходимых пит в-в; б) фототаксисы – к свету; в) аэротаксисы – к кислороду (у аэробных бактерий).

 

Классификация бактерий.

Вид Þ род Þ семейство Þ порядок Þ класс. Сущ. естественная (только создается в настоящее время) и искусственная классификация; используется морфо-физиологический метод: 1) морфологические признаки (размер, форма, окраска…), 2) физиологические признаки (тип питания отношения к to, O2, pH, потребность к факторам роста - витамины), 3) культуральные признаки (видно невооруженным глазом при посеве на разные среды), 4) генетические ((А+Т)/(Г+Ц)*100%), 5) гибридизация ДНК, 6) Строение 16S-РНК (небольшие отрезки РНК). Определитель бактерий Берджи: по морфологическим и физиологическим признакам, всего 35 групп бактерий, они разделяются на 4 основные категории: 1) Грам- эубактерии, имеющие клеточные стенки; 2) Грам+ --''--; 3) Эубактерии, лишенные клеточных стенок; 4) Архебактерии. Применение: 1) Древнее пр-во пищевых продуктов и напитков, 2) антибиотики и стероидные препараты, 3) получение внеклет. полисахаридов (для переливания крови) Lenconosta mesentraids, 4) получение витаминов «С» Gluconodacter oxydans; «В» Propioni bacterium, 5) растворители (ацетон, бутанол, спирт, орг. к-ты), 6) материалы (смазочные масла Xanthomonas) 7) выщелачивание металлов из бедных руд Thiobacillus ferrooxidans), 8) в с/х пр-во удобрений, борьба с вредителями, 9) энергетика, 10) сбраживание различных отходов, 11) получение биогаза (СН4 и Н2), 12) получение микробных биосенсеров и биочипов, 13) охрана окр. среды – переработка отходов, биодеградация ксенобиотиков.

 

Вирусы.

Группа м/о, не имеющих клет. структуры, отсутствуют ядро, цитоплазма и оболочка; открыты в 1892 г. Д. И. Ивановским. Размеры очень маленькие, проходили в бактериальные фильтры, видно только в электронный микроскоп, размер между мелкой бактерией и крупной белковой молекулой. Признаки: 1) аблигатные паразиты (не могут расти на искусственной среде), 2) не имеют клет. строения (внеклет. форма жизни), 3) отсутствие собственного обмена в-в (нет собственных ферментов), 4) мельчайшие размеры (20-300 нм). Мельчайшая частица вируса наз. вируоном, в виде них вирусы переносятся в орг-мы. Хим. состав – нуклеопротеид (ДНК или РНК, окруженная белковой оболочкой). Размножение включает: 1) прикрепление вирусных частиц к клетке хозяина, 2) проникновение вируса внутрь клетки, 3) внутриклет. размножение вируса, 4) выход частиц вируса из клетки. Форма: сферическая, кубическая, палочковидная. 1) in vivo, 2) метод культивирования в курином бульоне (с 30-х гг.), 3) культивирование в клетках (in vitro) – клетки берут из эмбриональных тканей, 4) культивирование из опухолевых клеток (самый передовой метод) Þ создание противовирусных вакцин.

 

Бактериофаги

вирусы бактерий. Открыты в 1898 г. Н.Ф.Гамалея. Каждый фаг специфичен для своего вида бактерий. Размеры 0, 04 до 0, 1 мкм. Состот из: - белковая оболочка; - ДНК; - Внутренний стержень; - Наружный чехол; - Белковые нити. Бактериофаг в природе сущ., но не размножается (зрелый фаг). В клетке хозяина размножается, но не губит ее (профаг). Разрушение (неблагоприяные условия => быстрое размножение фага) вегетативная форма. Фагализис – растворение клетки бактерии бактериофагом. Борьба с фагализисом: соблюдение технологического процесса.

Влияние внешних условий.

Знание условий внешн. среды имеет практическое значение для регулирования жизни м/о. 1) физ-ие (влажность, to, р, свет); 2) хим-ие (р-ция среды, О2, хим. в-ва); 3) биологические (антагонизм, метабиоз). Opt – оптимальные условия; max – max значение факторов, при котором рост еще возможен; min – min --''--. Закон минимума: Если при прочих равных условиях хотя бы 1 фактор будет < min, то рост м/о невозможен. Влажность: микробная жизнь возможна только во влажных условиях (жидкая среда, капельножидкая, твердая с влажной атмосферой), есть формы, устойчивые к высыханию (споры бактерий), высушивание применяется для консервирования продуктов (сухофрукты, сено), т. к. убиваются м/о, при влажности < 35% приостанавливается развитие бактерий, при < 15% - развитие грибов, поэтому высушивают до влажности 12-13%. Температура: 1) психрофилы («любящие холод»); 2) мезофилы («средняя to» - основная часть прокариотов opt 30-35о); 3) термофилы (теплолюбивые) а) собственно термофилы, б) экстратермофилы, в) гипертермофилы.

 

Энергия: 1) свет (l=760-380 нм): нужен фотосинтезирующим м/о, на некоторые болезнетворные д-ет губительно, 2) уф (l=240 нм) – обработка вакцин и сывороток, стерилизация помещений, т. к. губительно д-ет на бактерии, 3) ионизирующее излучение (l< 10 нм): мутации, гибель орг-ов, устойчивые – Thiobacillus ferroxidans (уран. руда), Mioroccus radiodurans, 4) инфракрасное излучение (l> 760 нм) – тепло. Ультразвук: частота 20000 Гц разрушает клет. структуры, в первую очередь белковые, обладает бактерицидным д-ем Þ применяется для стерилизации

 

Влияние хим. факторов.

1) рН: +] и [ОН-]; влияние растворимость в-в и поступление их в орг-м; а) боль-во бактерий нейтрофилы, б) при рН=2-3 – ацидофилы (живут в болотах и кислых озерах, горячие кислые источники - Thiobacillus), в) при рН> 9 алкафилы; 2) О2: а) облигатные (строгие) аэробы – боль-во орг-ов нуждаются в О2, б) облигатные анаэробы – О2 явл. ядом, в) эффект Пастера (дрожжи) – способны переходить от анаэробного к аэробному состоянию при доступе О2, г) факультативные аэробы – треб. не очень много О2, д) факультативные анаэробы – О2 не нужен для жизни, но не явл. ядом; 3) конц. хим. в-в: очень высокая конц. даже полезных в-в явл. нежелательными, приводит к гибели (обезвоживание клетки и т. д.) осмофилы (приспособились к выс. конц.) а) галофилы (любят соль NaCl 3-5% могут размножаться в мертвом море), б) любят сахар (70-80%) размножаются в меде, в варенье. Ag+ > Hg+ > Cu2+ > Pb2+ > Ni+ > Cr3+ > Zn2+ Антиокислители – ядовиты для аэробов: фенолы, хиноны, аром. амины. М/о быстро привыкают к вредным в-вам, создаются устойчивые формы. Антисептики – губительно д-ют на м/о, применяются для обеззараживания. Д-ие зависит от конц., природы в-ва и продолжительности д-ия. а) неорг. соли тяж. металлов, галогены, хлорная известь, йод, KMnO4, H2O2, ; жидкий хлор (для воды), б) орг-ие антисептики растворяют мембраны – этиловый и пропиловый спирт (70%); фенолы – карболовая к-та, формальдегид (формалин). Делают перевязочные ткани, одежду мед. персонала, ткань пропитывают антисептиком.

Влияние биол. факторов

Проявл. во взаимоотношениях между м/о. 1) Конкуренция (антагонизм – использ. спец. хим. в-во Z. B. антибиотик, бль-во м/о-антогонистов находится в почве) 2) Кооперация (а) Симбиоз: паразитизм выгода для одного, вред для другого; коменсализм – выгодно одному, другому безразлично; б) Метабиоз – последовательное разложение – один продукт явл. субстратом для одной группы, их продукт субстратом для след. и т. д. Z.B. разложение целлюлозы)

Химический состав микробов.

Может очень различаться, но общее для всех было выведено Клюйером и ван Нильсом, описали его в книге «Вклад микробов в биологию». 1) В наибольшем составе встречаются биогенные элементы (C»50% (оптим. источник – углеводы, аминок-ты…), N2»14% (необходим, т. к. входит в аминок-ты, нуклеин. к-ты; боль-во м/о потреб. восст. формы азота), O2»20%, H2»10% P»3% (входит в с-в фосфолипидов, нуклеин. к-т, АТФ; источники – фосфаты К и Na), S»1%) в å » 97%; 2) Макроэлементы (K»1%, Mg»Ca»0, 5%); 3) Микроэлементы (ионы тяж. мет.: Zn, Mn, Cu, Co, I) в å < 1%. Всего в клетке > 70 эл-тов, в виде соединений (больше всего воды – до 85%). Вода явл. растворителем в-в, источником Н+ и ОН-, дисперсионной средой для коллоидов; 4) Орг. соединения: белки, углеводы, липиды, аминокислоты, витамины. Макромолекулы состоят из мономеров. Белки эукариотов и прокариотов по хим. с-ву не различаются, за искл. диаминопонимелиновй к-ты, которая есть у прокариотов, она входит в стенку клетки.

В-во % от сух.в-в
Белки
Полисахариды
Липиды
РНК
ДНК

Питательные среды.

Факторы роста – не синтезир. м/о, но необх. для их роста (аминок-ты, витамины, азотистые основания). Классификация: 1) по с-ву – естественные, искусственные; 2) по контистенции – плотные (агар-агар, желатин), жидкие; 3) по назначению – универсальные (Р.Кох), элективные: может развиваться 1 вид м/о (Виноградский), накопительные: интересующее в-во в избытке (окисление нефти)

22. Принцип биохимического единства жизни .

Биохимическое направление в микробиологии: А. Клюйер (1888-1956); К. ван Ниль.: а) единство конструктивных процессов; б) единство энергетических процессов; в) единство хранения и передачи генетической информации.

Метаболизм микроорганизмов.

Конструктивный (строительный) поступившие извне в-ва подвергаются сложной переработке, из них синтезируются в-ва клетки – питание: поступление и усвоение пищи (ассимиляция). Энергетический освобождается необходимая для жизни энергия, скрытая в орг. соед-ях – дыхание процесс разложения и окисления орг. в-в (диссимиляция). Они не отделимы друг от друга, взаимосвязаны; обуславливают рост, развитие и размножение орг-ма. Особенность обмена у м/о: необычайно интенсивное потребление ими в-в из среды, основная масса расходуется в энергетическом обмене (продукты к-ты, спирты, СО2, Н2…)

 

Ферменты, транспорт в-в

Ферменты – биол. катализаторы, вырабатываемые клетками орг-ма (обмен в-в, рост, развитие). По хим. природе – белки (протеины – простые белки, протеиды - сложные белки: белки (избир. способность) и простетическая (активная) группа (опред. каталитич. способность фермента)). Присущи все з-ны катализа, задача - ¯ Еакт. Основной с-в ферментов опред. генотипом клетки (относительно постоянный). Конститутивные – присутствуют в клетках данного орг-ма, входят в число компонентов клетки; индуцируемые (адаптивные) – вырабатываются только при изменившихся условиях жизни. Эндоферменты (внутриклет.) – не выделяются при жизни в окр. среду, экзоферменты (внеклет.) – выделяются наружу, участвуют во внеклет. переваривании пищи, т. к. вызывают расщепление сложных в-в на более простые. Мех-м поступления в-в: на пути пит. в-в 2 барьера – клет. стенка и цитоплазмат. мембрана. 1) пассивная диффузия а) по градиенту конц-ции для неэлектролитов, б) по градиенту конц-ции электр. потенциала для электролитов; 2) облегченная диффузия (ферменты пермеазы); 3) активный транс-т (аминок-ты)

 

Технология.

Технология – совокупность способов, приемов, с пом. которых из исх. материала (сырья) получают продукт, имеющий значение для практики чел-ой деят-ти. 3 класса технологий: 1) физико-механические – технологии, в которых в ходе получения продукта сырье меняет форму или агрегатное состояние, но сохраняет состав. 2) хим-ие – технологии, в которых в процессе получения продукта сырье испытывает изменение хим. с-ва. 3) биотехнологии – это целенаправленное получение ценных для народного хоз-ва и различных областей чел-ой деят-ти продуктов, в процессе которого используется биохим. деят-ть м/о, изолированных клеток растений, животных или человека, или их компонентов.

 

Биотехнология.

Биотехнология - это целенаправленное получение ценных для народного хоз-ва и различных областей чел-ой деят-ти продуктов, в процессе которого используется биохим. деят-ть м/о, изолированных клеток растений, животных или человека, или их компонентов.

 

Виды биохим. д-ти

1) Выращивание биомассы, 2) выделение продуктов, 3) утилизация опр. компонентов исх. среды, 4) обр. газа и ­ V (шампанское, пиво), 5) изъятие пит. в-в, 6) биолог. воздействие на выщелачивание металлов из руд, 7) биотрансформация – преобразование одного в-ва в другое под д-ем ферментов и м/о, 8) биокатализ – расщепление хим. в-в с обр. нов. соединений.

 

30. Å биотехн. процессов.

1) боль-во процессов проводится при нормальных to и р, 2) многие в-ва, образовавшиеся с помощью биотехн. методов явл. уникальными и не могут быть получены с помощью хим. синтезов, 3) в кач-ве сырья обычно использ. дешевые источники или отходы с/х пр-ва, 4) биотехн. процессы не оказывают сущ. воздействия на окр. среду, явл. более экологичными, 5) аппаратура, используемая в биотехн. пр-вах дешевле, чем в хим-их.

 

Типовая блок-схема.

Блок-схема – это граф. изображение последоват-ти технол. стадий при получении продукта.

1) подготовительные стадии (приготовление и стерилизация среды, газов, подготовка посевных материалов, биокатализатора, предварительная обработка сред); 2) биотехнологические стадии (Ферментация, биотрансформация, биокатализ, биоокисление, метановое брожение, биокомпостирование, биосорбция, биодеградация);

3) разделение жидк-ти. и биомассы (Отстаивание, фильтрация, сепарация, центрофугирование, микрофильтрация, коагуляция); 4) выделение внеклет. продуктов (дезинтеграция, ферментолиз, гидролиз); 5) выделение внутриклет. продуктов. (Экстракция, адсорбция, ионный обмен, ультрафильтрация, центрофугирование, осаждение+ректификация); 6) очистка продукта (Экстракция, осаждение, адсорбция, ионный обмен, кристаллизация, нанофильтрация, диализ, хромотография); 7) концентрирование продукта (Выпаривание, сушка, осаждение, кристаллизация, фильтрация, нанофильтрация); 8) приготовление готовых форм (гранулирование, дражирование, таблицирование, розлив, фасовка, ампулирование).

 

 

Пр-во биогаза.

1) приготовление сырья; 2) приготовление посевного материала, 3) метановое брожение, 4) комплинирование ® биогаз; 5) сушка сброженного осадка ® удобрение.

 

 

Пр-во спирта.

1) приготовление пит. среды; 2) фермент: солод, спец ферменты ® осахаривание (крахмал = глюкоза); 3) брожение; 3') приготовление посевного материала (дрожжи); 4) затаривание в баллоны (исп. в газ. Напитках); 5) ректефикация; 6) розлив конц. фазы (спирт); 7) куб.остаток – спирт-барда: сушка; 8) кормовой продукт.

 

Пр-во кормового лизина

1) приготовление среды; 2) приготовление посевного материала; 3) комплимирование воздуха; 4) стерилизация среды; 5) стерилизация воздуха; 6) ферментация; 7) выпарка; 8) отруби ® гранулирование; 9) сушка ® ККЛ (кормовой концентрат лизина).

Пр-во живой вакцины.

1) приготовление среды; 2) комплинирование воздуха, 3) приготовление посевного материала; 4) стерилизация среды; 5) стерилизация воздуха; 6) ферментация; 7) ултра- или микрофильтрация ® сток без бактерий; 8) нагревание с реагентом; 9) диализ (массопередача через полупроницаемую перегородку низкомолекулярных соединений) ® низкомолекулярные соединения; 10) ампулирование ® вакцина.

43. Пр-во антибиотика (эритромицина).

1) приготовление среды; 2) подготовка воздуха; 3) приготовление посевного материала; 4) приготовление р-ров глюкозы; 5) ферментация; 6) микрофильтрация ® мицелий; 6') сушка ® удобрение; 7) нанофильтрация ® сток; 8) бутилацетат ® экстракция® сток; 9) бутилацетатный экстракт®; KCNS® получение роданида эритромицина; 9') регенерация - ректификация®бутилацетат на 8; 10) роданид® сушка; 11) NaOH® получение эритромицина основания; 12) сушка; 13) таблецирование® антибиотик.

 

Пр-во пекарских дрожжей.

1) приготовление посевного материала; 2) комплинирование воздуха; 3) осветление мелассы (отход свёкло-сахарного пр-ва); 4) приготовление пит. среды; 5) ферментация; 6) сепарирование (центробежн. сепараторы отделение биомассы от жидкости); 7) прессование ® пресс. дрожжи (более живые); 8) сушка ® суш. дрожжи (дольше хранятся).

 

Пр-во вина

1) подготовка сырья, выжим сока; 2) подготовка винных дрожжей; 3) брожение; 4) фильтрование ® винные дрожжи (отход); 5) выдержка; 6) розлив ® вино

Предмет и задачи микробиологии.

Микробиология (от греч. mikros – малый, bios – жизнь, logos - учение) изучает строение, жизнедеятельность, закономерности и условия развития мельчайших орг-ов, использование их полезных св-в и устранение вредных. Различают: общую (изучает основные закономерности развития и жизнедеятельности м/о и их роль в природе; является основой для других направлений), медицинскую (изучает патогенные для человека м/о, разрабатывает методы профилактики, диагностики и лечения болезней), ветеринарную, сельскохозяйственную (изучает роль м/о в почвообразовательных процессах, увеличение плодородия почвы и т.д.), техническую (изучает научные основы использования д-ия м/о в пром-ти с целью создания полезных продуктов, разрабатывание методов предохранения разл. сырья от порчи), водную (изучает микрофлору разл. водоемов, питьевой воды, роль м/о при очистке сточных вод), экологическую и др. микробиологии. Объектами исследования являются бактерии (бактериология), вирусы (вирусология), грибы (микология), водоросли (альгология) и т. д. Задачи: 1) получение высокоактивных штаммов; 2) изучение закономерностей смешанного культивирования (Z.B. получение биотоплива, очистка сточных вод, получение антибиотиков и витаминов); 3) защита высокоактивных штаммов от бактериофагов; 4) разработка методов сохранения высокопродукт. штаммов м/о (морозильная (-270о), сушка, пересев).

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 38; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.09 с.)
Главная | Случайная страница | Обратная связь