Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ИСТОРИЯ РАЗВИТИЯ ИММУНОЛОГИИ



Иммунология как определенное направление исследований возникла из практической необходимости борьбы с инфекционными заболеваниями. Как отдельное научное направление иммунология сформировалась лишь во второй половине ХХ века. Гораздо более продолжительна истории иммунологии как прикладного раздела инфекционной патологии и микробиологии. Многовековые наблюдения за заразными болезнями заложили фундамент современной иммунологии: несмотря на широкое распространение чумы (V век до н.э.), никто не заболевал дважды, по крайней мере смертельно и для захоранения трупов использовали переболевших.

Имеются свидетельства тому, что первые прививки оспы проводили в Китае за тысячу лет до Рождества Христова. Инокуляция содержимого оспенных пустул здоровым людям с целью их защиты от острой формы заболевания распространилась затем в Индию, Малую Азию, Европу, на Кавказ.

На смену инокуляции пришел метод вакцинации (от лат. «vacca» - корова), разработанный в конце XVIII в. английским врачом Э. Дженнером. Он обратил внимание на тот факт, что молочницы, ухаживавшие за больными животными, иногда заболевали в крайне слабой форме оспой коров, но при этом никогда не болели натуральной оспой. Подобное наблюдение давало в руки исследователя реальную возможность борьбы с болезнью людей. В 1796 г., через 30 лет после начала своих изысканий Э. Дженнер решился опробовать метод вакцинации коровьей оспой. Эксперимент прошел успешно и с тех пор способ вакцинации по Э. Дженнеру нашел широкое применение во всем мире.

Зарождение инфекционной иммунологии связывают с именем выдающегося французского ученого Луи Пастера. Первый шаг к целенаправленному поиску вакцинных препаратов, создающих устойчивый иммунитет к инфекции, был сделан после наблюдения Пастера над патогенностью возбудителя куриной холеры. Из этого наблюдения Пастер сделал вывод: состарившаяся культура, потеряв свою патогенность, остается способной к созданию устойчивости к инфекции. Это определило на многие десятилетия принцип создания вакцинного материала - тем или иным способом (для каждого возбудителя своим) добиваться снижения вирулентности патогена при сохранении его иммуногенных свойств.
Хотя Пастер разработал принципы вакцинации и успешно применял их на практике, он не знал о факторах, включенных в процесс защиты от инфекции. Первыми, кто пролил свет на один из механизмов невосприимчивости к инфекции, были Эмиль фон Беринг и Китазато. Они продемонстрировали, что сыворотка от мышей, предварительно иммунизированных столбнячным токсином, введенная интактным животным, защищает последних от смертельной дозы токсина. Образовавшийся в результате иммунизации сывороточный фактор - антитоксин - представлял собой первое обнаруженное специфическое антитело. Работы этих ученых положили начало изучению механизмов гуморального иммунитета.
У истоков познания вопросов клеточного иммунитета стоял русский биолог-эволюционист Илья Ильич Мечников. В 1883 году он сделал первое сообщение по фагоцитарной теории иммунитета на съезде врачей и естествоиспытателей в Одессе. У человека есть амебоидные подвижные клетки - макрофаги, нейтрофилы. «Едят» они пищу особого рода - патогенных микробов, функция этих клеток - борьба с микробной агрессией.
Параллельно с Мечниковым разрабатывал свою теорию иммунной защиты от инфекции немецкий фармаколог Пауль Эрлих. Он знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы им «антителами». Самое характерное свойство антител - это их ярко выраженная специфичность. Образовавшись как защитное средство против одного микроорганизма, они нейтрализуют и разрушают только его, оставаясь безразличными к другим.
Две теории - фагоцитарная (клеточная) и гуморальная - в период своего возникновения стояли на антагонистических позициях. Школы Мечникова и Эрлиха боролись за научную истину, не подозревая, что каждый удар и каждое его парирование сближало противников. В 1908 г. обоим ученым одновременно была присуждена Нобелевская премия.
К концу 40-х - началу 50-х годов ХХ столетия завершается первый период развития иммунологии. Был создан целый арсенал вакцин против самого широкого набора инфекционных заболеваний. Эпидемии чумы, холеры, оспы перестали уничтожать сотни тысяч людей. Отдельные, спорадические вспышки этих заболеваний встречаются до сих пор, но это лишь очень локальные, не имеющие эпидемиологического, а тем более пандемического значения случаи.

 

Новый этап развития иммунологии связан в первую очередь с именем выдающегося австралийского ученого М.Ф. Бернета. Именно он в значительной степени определил лицо современной иммунологии. Рассматривая иммунитет как реакцию, направленную на дифференциацию всего «своего» от всего «чужого», он поднял вопрос о значении иммунных механизмов в поддержании генетической целостности организма в период индивидуального (онтогенетического) развития. Именно Бернет обратил внимание на лимфоцит как основной участник специфического иммунного реагирования, дав ему название «иммуноцит». Именно Бернет предсказал, а англичанин Питер Медавар и чех Милан Гашек экспериментально подтвердили состояние, противоположное иммунной реактивности - толерантности. Именно Бернет указал на особую роль тимуса в формировании иммунного ответа. И, наконец, Бернет остался в истории иммунологии как создатель клонально-селекционной теории иммунитета. Формула такой теории проста: один клон лимфоцитов способен реагировать только на одну конкретную, антигенную, специфическую детерминанту.
Особого внимания заслуживают взгляды Бернета на иммунитет как на такую реакцию организма, которая отличает все «свое» от всего «чужого». После доказательства Медаваром иммунологической природы отторжения чужеродного трансплантата, после накопления фактов по иммунологии злокачественных новообразований стало очевидным, что иммунная реакция развивается не только на микробные антигены, но и тогда, когда имеются любые, пусть незначительные антигенные различия между организмом и тем биологическим материалом (трансплантатом, злокачественной опухолью), с которым он встречается.

Сегодня мы знаем если не все, то многое из механизмов иммунного реагирования. Нам известны генетические основы удивительно широкого разнообразия антител и антигенраспознающих рецепторов. Мы знаем, какие типы клеток ответственны за клеточные и гуморальные формы иммунного реагирования; в значительной степени понятны механизмы повышенной реактивности и толерантности; многое известно о процессах распознавания антигена; выявлены молекулярные участники межклеточных отношений (цитокины); в эволюционной иммунологии сформирована концепция роли специфического иммунитета в прогрессивной эволюции животных. Иммунология как самостоятельный раздел науки встала в один ряд с истинно биологическими дисциплинами: молекулярной биологией, генетикой, цитологией, физиологией, эволюционным учением.

СПОСОБЫ ЗАЩИТЫ ОРГАНИЗМА

Иммунитет - универсальная способность живых существ противостоять действию повреждающих агентов, сохраняя свою целостность и биологическую индивидуальность. Это защитная реакция, благодаря которой организм становится невосприимчивым к болезнетворным микроорганизмам (вирусам, бактериям, грибкам, простейшим, гельминтам) и продуктам их жизнедеятельности, а также тканям и веществам (например, ядам растительного и животного происхождения), обладающим чужеродными (антигенными) свойствами.

Органы иммунной системы
Центральные: костный мозг и тимус.

Периферические: селезенка , лимфатические узлы , лимфоидная ткань ассоциированная со слизистыми.
В центральных органах (вилочковой железе и костном мозге) будущие защитники организма - так называемые иммунные клетки - предшественники проходят азы курса молодого бойца, превращаясь в зрелые, сведущие в искусстве охраны (говоря языком специалистов - иммунокомпетентные) лимфоциты. Затем они отправляются доучиваться боевому искусству на следующую ступень.

В периферических органах (селезенке, небных миндалинах, лимфатических узлах и их близких «родственников» - лимфатических фолликулах пищеварительного и дыхательного тракта) лимфоциты проходят последние этапы целенаправленного развития, чтобы научиться нести боевую службу применительно к местным условиям.

Рис. 2. Органы и ткани иммунной системы (слева), основные клетки крови (справа).

Приобретенный и врожденный иммунитет.
Как правило, иммунный ответ заключается, во-первых, в распознавании возбудителя или иного чужеродного материала, и во-вторых, в развертывании цепи реакций, направленных на их устранение. Все разнообразные формы иммунного ответа можно разделить на два типа - врожденные и приобретенные реакции. Основное различие между этими двумя типами иммунореактивности состоит в том, что приобретенный иммунитет высокоспецифичен в отношении каждого конкретного возбудителя. Кроме того, повторная встреча с тем или иным патогенным микроорганизмом не приводит к изменениям врожденного иммунитета, но повышает уровень приобретенного: иммунная система как бы «запоминает» возбудителя, чтобы впоследствии предотвратить вызываемую им инфекцию. Две главные характеристики приобретенного иммунитета - специфичность и иммунологическая память.
Иммунный ответ осуществляют прежде всего лейкоциты, которые представлены несколькими разновидностями.
Фагоциты и врожденный иммунитет . Одну из важнейших групп лейкоцитов составляют фагоцитирующие клетки: моноциты, макрофаги и полиморфноядерные нейтрофилы. Они способны связывать микроорганизмы на своей поверхности, а затем поглощать и уничтожать их. Это функция основана на простых, неспецифических механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врожденного иммунитета. Фагоциты образуют первую линию защиты против инфекции.
Лимфоциты и приобретенный иммунитет . Другая важнейшая группа лейкоцитов - это лимфоциты. Им принадлежит ведущая роль во всех реакциях приобретенного иммунитета, поскольку они специфически распознают конкретный возбудитель, где бы он не находился, внутри или вне клеток, в тканевой жидкости или в крови. Существуют различные типы лимфоцитов, но основных популяций две: Т-лимфоциты и В-лимфоциты. Последние противодействуют внеклеточным возбудителям и влиянию их продуктов, образуя антитела, молекулы которых способны специфически распознавать и связывать определенные молекулы-мишени - антигены. Антигенами могут служить молекулы на поверхности клеток микроорганизмов либо образуемые ими токсины. Т-лимфоциты, точнее разные их популяции вместе, обладают широким набором активностей. Одни Т-клетки участвуют в регуляции дифференцировки В-лимфоцитов и образования антител. Другие взаимодействуют с фагоцитами, помогая им в разрушении поглощенных микробных клеток. Третья группа Т-лимфоцитов распознает и разрушает клетки, инфицированные вирусами.

Взаимодействие между лимфоцитами и фагоцитами . Масштабы таких взаимодействий весьма значительны. Например, определенные типы фагоцитирующих клеток способны после захвата антигенов представлять их Т-лимфоцитам в форме, подходящей для распознавания. Этот процесс назван представлением (презентацией) антигена. Распознав антиген, Т-лимфоциты в свою очередь выделяют растворимые факторы ( цитокины ), которые активируют фагоциты и вызывают разрушение ими поглощенных микробов. При взаимодействии другого характера фагоциты используют образуемые В-лимфоцитами антитела для собственного более эффективного распознавания возбудителей. В результате иммунный ответ на инфекцию чаще всего складывается из различных взаимосвязанных эффектов как врожденного, так и приобретенного иммунитета. На ранних стадиях инфекции доминируют механизмы врожденного иммунитета, но позднее лимфоциты начинают осуществлять специфический ответ, свойственный приобретенному иммунитету. При этом они «запоминают» возбудителя и если впоследствии организм вновь подвергается заражению этим микробом, они «вспоминают» его и осуществляют более эффективный и быстрый иммунный ответ.
Какая из форм иммунного ответа будет эффективной, зависит в значительной мере от локализации инфекции и типа возбудителя. Наиболее существенно при этом, проникают микробы внутрь клеток организма-хозяина или нет. Для того чтобы ликвидировать внутриклеточную инфекцию - такую вызывают все вирусы, некоторые бактерии и ряд паразитических простейших - иммунная система должна распознать и разрушить инфицированные клетки. В случае внеклеточного размножения инфицирующего агента в тканях, жидкостях или полостях организма - это характерно для многих бактерий и более крупных возбудителей - иммунный ответ совершенно иной. При развитии инфекции, однако, даже внутриклеточные возбудители, чтобы достичь соответствующих клеток-мишеней, передвигаются с током крови и тканевой жидкости, и в это время они уязвимы для тех факторов иммунной системы, которые в основном расчитаны на внеклеточных возбудителей.

Рис. 4. Взаимодействие между фагоцитами (МФ) и лимфоцитами (Т и В) посредством цитокинов после обнаружения чужеродного агента (антиген), в результате чего плазматические клетки (ПК) продуцируют антитела.

Структура иммунной системы

Понятие об иммунологии.
Неспецифические факторы защиты организма человека.

ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ ЗАЩИТЫ (ВРОЖДЕННЫЕ)


Под неспецифическим иммунитетом подразумевают систему предсуществующих защитных факторов организма, присущих данному виду как наследственно обусловленное свойство. Так, собаки никогда неболеют чумой человека, а куры - сибирской язвой. Иммунитет, создаваемый анатомическими, физиологическими, клеточными и молекулярными факторами, которые являются естественными составляющими элементами организма, иначе называют конституционным. Такие факторы защищают организм от разных экзогенных и эндогенных агрессий, они передаются наследственно, их защитные функции лишены избирательности и они не способны сохранять память от первичного контакта с чужеродностью.
Условно факторы неспецифической защиты можно разбить на четыре типа: физические (анатомические); физиологические; клеточные, осуществляющие эндоцитоз или прямой лизис чужеродных клеток; молекулярные (факторы воспаления).

Физические (анатомические) барьеры
Кожа . Неповрежденная кожа представляет собой обычно непроницаемый барьер для микроорганизмов. Лишь при некоторых инфекционных болезнях, например, лептоспирозах, прямое проникновение возбудителя через неповрежденную кожу, возможно, является первичным путем заражения. Здоровая неповрежденная кожа обладает отчетливой бактерицидной активностью в отношении тех микроорганизмов, которые не являются представителями ее нормальной микрофлоры.
Слизистые оболочки. На уровне слизистых оболочек существует множество разных механизмов защиты внутренней среды организма, в том числе от проникновения в нее микроорганизмов (слизь, реснички мерцательного эпителия, лизоцим, пероксидазы, секреторные антитела, фагоцитирующие клетки, лимфоциты).
Нормальная микрофлора организма . Микроорганизмы, которые населяют кожу и слизистые оболочки, сообщающиеся с внешней средой, составляют нормальную микрофлору организма. Эти микроорганизмы способны противостоять действию патогенных микроорганизмов и губительно действовать на них, тем самым участвуя в защите организма.

Физиологические барьеры
Этот тип защиты включает температуру тела, рН и напряженность кислорода в районе колонизации микроорганизмами, а также различные растворимые факторы, воспаление.

Клеточные факторы
К клеточным факторам неспецифической защиты относятся фагоцитирующие клетки и натуральные киллеры.
Фагоцитирующие клетки . Одним из мощных факторов резистентности является фагоцитоз. И.И.Мечников установил, что фагоцитарными свойствами обладают зернистые лейкоциты крови и лимфы, главным образом полиморфноядерные нейтрофилы (микрофаги - нейтрофилы, эозинофилы и базофилы) и по-другому обозначаются как полиморфноядерные лейкоциты, или гранулоциты, а также моноциты и различные клетки ретикулоэндотелиальной системы, которую он назвал макрофагами. В настоящее время под макрофагами понимают клетки, которые обладают высокой фагоцитарной активностью. Они различаются по форме и размерам, в зависимости от тканей, где они обнаруживаются. По классификации ВОЗ все макрофаги объединены в систему мононуклеарных фагоцитов (СМФ).
Фагоцитам присущи три функции:

  • Защитная. Фагоцитозом уничтожаются чужеродные объекты, т.е. происходит очистка организма от инфекционных агентов, продуктов распада, отмирающих клеток, неметаболизируемых органических веществ.
  • Секреторная. Взаимодействие объекта фагоцитоза с фагоцитом стимулирует бактерицидные системы последнего. К основным системам бактерицидности относят окислительную (О2-зависимую) и неокислительные (ферментные). Окислительная бактерицидная система убивает микроб за счет прямого действия продуцируемых фагоцитом О2, ОН и Н2О2 или галогенизацию. Из ферментных систем самым сильным бактериологическим потенциалом обладают лизоцим и катепсин.

Кроме того фагоциты синтезируют и секретируют множество цитокинов - биологически активных веществ, необходимых для поддержания иммунного ответа организма на чужеродное вещество.

  • Представляющая. Переработка антигена (процессинг) и представление его иммунокомпетентным клеткам, принимающим участие в формировании иммунного ответа.

Процесс фагоцитоза складывается из следующих стадий:

  • Хемотаксис - продвижение фагоцита к объекту фагоцитоза, осуществляется с помощью псевдоподий.
  • Адгезия (прикрепление). На мембране фагоцитов размещены различные рецепторы для захвата микроорганизмов.
  • Эндоцитоз (поглощение). Принципы поглощения бактерий идентичны таковым у амеб: захваченные частицы погружаются в протоплазму и в результате образуется фагосома с заключенным внутри объектом.
  • Внутриклеточное переваривание. К фагосоме устремляются лизосомы, затем оболочки фагосомы и лизосомы сливаются и ферменты лизосом изливаются в фаголизосому . Фагоцитированные микроорганизмы подвергаются атаке комплекса различных микробицидных факторов.

Рис. 2. Последовательность фагоцитоза.

Завершенность фагоцитарных реакций. Микробицидный потенциал фагоцитирующих клеток эффективен против большей части патогенных микроорганизмов ( завершенный фагоцитоз ), но некоторые возбудители резистентны к его действию и способны длительно существовать внутри фагоцитов. Многие факультативные и облигатные внутриклеточные паразиты не только сохраняют жизнеспособность, но и способны размножаться внутри клеток. В этом случае фагоцитоз остается незавершенным .

Для полноценного фагоцитоза нужен фагоцитарный стимул определенной силы:
А. Микробные факторы. При низком соотношении микроб/фагоцит (1: 1) реакция почти отсутствует. Увеличение соотношения до 25: 1 несколько стимулирует процесс, при соотношении до 60: 1 фагоцитируется около 80% микробов, но дальнейшее увеличение соотношения резко подавляет фагоцитоз.
Б. Универсальными стимуляторами фагоцитов являются опсонизированные частицы и иммунные комплексы .
Опсонизация - процесс, облегчающий фагоцитоз. Обусловлен связыванием опсонинов (антител и компонента С3b комплемента) с поверхностными антигенами бактерий.
В. Лимфокины, гамма-интерферон - медиаторы , продуцируемые активированными Т-лимфоцитами в местном клеточно-опосредованном иммунном ответе, активируют макрофаги и привлекают другие провоспалительные клетки.
Для характеристики активности фагоцитоза введен фагоцитарный показатель . Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом.

Натуральные киллеры .
Натуральные киллеры ( НК или NK )или естественные киллеры ( ЕК ) представляют собой популяцию лимфоидных клеток, лишенных признаков Т- и В-лимфоцитов. Их участие в неспецифическом иммунном ответе состоит в способности оказывать прямое цитотоксическое действие на злокачественнотрансформированные и вирусинфицированные клетки, а также клетки, поглотившие некоторые внутриклеточные бактериальные патогены.. В процессе цитолиза различают три основных стадии: распознавание, выделение цитотоксинов («летальный удар») и лизис клетки-мишени.

Гуморальные (молекулярные) факторы неспецифической защиты
В неспецифическом иммунитете против микробов участвуют белки острой фазы воспаления: С-реактивный протеин (белок), сывороточный амилоид, альфа2-макроглобулин, фибриноген, b-лизины, интерфероны, система комплемента, лизоцим и др.

Система комплемента .
Система комплемента это комплекс растворимых белков и белков клеточной поверхности, взаимодействие которых опосредует разные биологические эффекты:

  • разрушение (лизис) клеток,
  • привлечение лейкоцитов в очаг инфекции или воспаления (хемотаксис),
  • облегчение фагоцитоза (опсонизация),
  • стимуляция воспаления и реакций гиперчувствительности (анафилотоксины).

Большая часть компонентов комплемента синтезируются гепатоцитами и мононуклеарными фагоцитами. Компоненты комплемента циркулируют в крови в неактивной форме. При определенных условиях самопроизвольный каскад ферментативных реакций ведет к последовательной активации каждого из компонентов системы комплемента. Компоненты комплемента обозначают латинской буквой С и арабскими цифрами (С1, С2.... С9).
Существуют два взаимосвязанных пути активации комплемента: классический и альтернативный. В результате формируется мембраноатакующий комплекс, который способен пенетрировать (формирование поры) клеточную мембрану и вызывать лизис микроорганизмов.

Рис. 5. Активация белков комплемента (схема).

Интерфероны.
Интерфероны (ИФН или IFN) представляют собой разновидность специфических гликопротеинов, которые оказывают множество биологических эффектов широкого спектра, вырабатываются многими клетками в ответ на внедрение вируса или сложных биополимеров. Интерферон, образованный клетками человека, функционально активен только в организме человека, но не животных, и наоборот, т.е. обладает видовой специфичностью.
Выделяют три главных класса интерферонов: альфа-интерферон вырабатывают В-лимфоциты, его получают из лейкоцитов крови (лейкоцитарный); бетта-интерферон получают при заражении вирусами культуры клеток фибробластов человека (фибробластный) и гамма - интерферон получают из иммунных Т-лимфоцитов, сенсибилизированных антигенами (иммунный).
Действие интерферона не связано с непосредственным влиянием на вирусы или клетки, т.е. интерферон не действует вне клетки. Адсорбируясь на поверхности клетки или проникая внутрь клетки, он через геном клетки влияет на процессы репродукции вируса или пролиферацию клетки (активирует синтез ферментов и ингибиторов, блокирующих трансляцию вирусных иРНК, тем самым предохраняя соседние клетки от вирусной инфекции).
Значение интерферонов. Интерфероны играют большую роль в поддержании резистентности к вирусам, поэтому его применяют для профилактики и лечения многих вирусных инфекций. Антипролиферативное действие, особенно гамма-интерферона, используют для лечения злокачественных опухолей, а иммуномодулирующее действие - для коррекции работы иммунной системы с целью ее нормализации при различных иммунодефицитах.

Лизоцим.
Лизоцим - термостабильный белок типа муколитического фермента. Он содержится в тканевых жидкостях животных и растений, у человека - в слезах, слюне, перитонеальной жидкости, плазме и сыворотке крови, в лейкоцитах, материнском молоке и др. Лизоцим продуцируется моноцитами крови и тканевыми макрофагами. Он вызывает лизис многих сапрофитных бактерий, оказывая менее выраженное литическое действие на ряд патогенных микроорганизмов и неактивен в отношении вирусов.
И другие гуморальные факторы. Тема 21. Антигены.

Содержание:

  • Антигены и их свойства
  • Антигены микроорганизмов
  • Антигены организма человека

АНТИГЕНЫ И ИХ СВОЙСТВА


Первоначально термин антиген (от англ. Antibodi generator) применяли для обозначения любой молекулы, индуцирующей образование В-клетками специфических антител. Однако теперь этот термин имеет более широкий смысл, обозначая любую молекулу, которую могут специфически распознавать элементы системы приобретенного иммунитета, т.е. В-клетки или Т-клетки, либо и те и другие.
Антиген - это инициатор и движущая сила всех реакций приобретенного иммунитета. Иммунная система возникла для распознавания и разрушения чужеродных агентов, а также устранения источника их образования - бактерий, инфицированных вирусом клеток и т.п. Когда антиген элиминирован, иммунный ответ прекращается.
Антигены - вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти).


Свойства антигена определяются комплексом признаков: иммуногенность, антигенность, специфичность.
Иммуногенность - способность антигена индуцировать в организме иммунный ответ.
Антигенность - способность антигена взаимодействовать только с гомологичными антителами и лимфоцитами определенного клона.
Специфичность - структурные особенности, отличающие один антиген от другого.
Способность вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы антигена - антигенная детерминанта (эпитоп) , избирательно реагирующая с антигенраспознающими рецепторами и антителами. Молекула антигена может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула антигена и чем больше у нее эпитопов, тем больше вероятность развития иммунной ответа.
Иммуногены или полные антигены - это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью. Иммуногенами являются биополимеры - белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем бoльшую иммуногенность проявляют их белки.
Гаптены - неполные антигены , относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.
Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.
Толерогены - антигены, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них.

АНТИГЕНЫ МИКРООРГАНИЗМОВ


Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины - полноценные антигены, вызывающие развитие иммунных реакций.

Антигены бактерий .
По расположению в бактериальной клетке выделяют антигены:

Капсульный антиген - К Ag

Жгутиковый антиген - H Ag

Соматический антиген - O Ag

О-Аг большинства бактерий представлены термостабильным липополисахаридно-полипептидным комплексом; у грамотрицательных бактерий О-Аг представляет эндотоксин.
Н-Аг представлен термолабильным белком флагеллином.
К-Аг большинства бактерий имеют полисахаридную природу. По чувствительности к температуре К-Аг подразделяются на А-, В- и L-антигены. Наиболее термостабильными являются А-Аг, выдерживающие кипячение более 2 часов. В-Аг выдерживают нагревание при температуре 60°С в течение часа, а L-Аг разрушаются при нагревании до 60°С.
Для идентификации выделенных микроорганизмов в лаборатории применяют внутривидовую или внутриродовую дифференциацию микроорганизмов, основанную на различиях в антигенной структуре. При этом символически отображают антигенную структуру бактерий в виде антигенной формулы . Например, антигенную формулу одного из сероваров E. coli, вызывающую колиэнтериты у детей раннего возраста обозначают как О55: К5: Н21 (серовар, относящийся к серогруппе О55).

Рис. 1. Антигены бактерий: О-антиген (3 - клеточная стенка); Н-антиген (7 - жгутик); К-антиген (2 - капсула).

Антигены вирусов
В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S-антигены (solutio - раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие - с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V-антигены - гемагглютинин и фермент нейраминидазу.

Рис. 2. Антигены вирусов гриппа (слева) и гепатита В (справа) поверхностные (V-антигены) и серцевинные (S-антигены).

АНТИГЕНЫ ОРГАНИЗМА ЧЕЛОВЕКА


Все ткани и клетки организма человека обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи - для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости

Изоантигены
Изоантигены или групповые антигены - это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.
В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.
Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (О) - антигены отсутствуют, группа II (А) - в эритроцитах содержится антиген А, группа III (В) - эритроциты обладают антигеном В, группа IV (АВ) - эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекресно-реагирующими ), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.
У части людей эритроциты содержат еще особый антиген, получивший название резус-антигена (Rh). По наличию или отсутствию Rh-антигена люди разделяются на две группы - резус (Rh)-положительных и резус (Rh)-отрицательных. При переливании крови Rh-отрицательному реципиенту, если эритроциты донора содержат Rh-антиген, может развиваться гемолитическая желтуха.


Рис. 3. Рецепторы, встроенные в мембрану эритроцита, являются антигенами организма (изоантигены) в том числе антигены А и В системы АВО и резус фактор.

Антигены главного комплекса тканевой (гисто) совместимости .
Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС-антигены (англ. Major histocompatibility complex). МНС-антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название - HLA (Human leucocyte antigens). МНС-антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название - трансплантационные антигены. Кроме того, МНС-антигены играют обязательную роль в индукции иммунного ответа на любой антиген.
Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+-лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.
МНС-антигены II класса находятся преимущественно на антигенпредставляющих клетках - дендритных, макрофагах, В-лимфоцитах. Основная роль в иммуногенезе антигенов II класса - участие в представлении чужеродных антигенов Т-хелперным лимфоцитам.

Рис. 4. Антигены главного комплекса гистосовместимости I класса представляют антиген (темно-синий круг)Т-киллерам, антигены II класса представляют антиген Т-хелперам.

СТРУКТУРА ИММУННОЙ СИСТЕМЫ

Тема 22. Иммунная система организма человека. Антитела.

Содержание:

· Факторы специфической защиты

· Иммунная система человека

· Антитела

ФАКТОРЫ СПЕЦИФИЧЕСКОЙ ЗАЩИТЫ


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 1071; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.057 с.)
Главная | Случайная страница | Обратная связь