Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фотосинтез у зеленых бактерий: характеристика фототрофов, морфология и локализация фотосинтетического аппарата, механизм фотосинтеза ⇐ ПредыдущаяСтр 5 из 5
В зависимости от того, какой источник энергии могут использовать прокариоты, их делят на фототрофов (источник энергии - свет) и хемотрофов (источник энергии - окислительно-восстановительные реакции). Организмы, у которых источниками (донорами) электронов в энергетическом процессе являются неорганические вещества, предложено называть литотрофными, а те, у которых донорами электронов служат органические соединения, - органотрофными. Фотосинтетический аппарат состоит из трех основных компонентов: - светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; - фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; - фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы а в модифицированной форме. Эти же виды хлорофиллов наряду с другими, а также пигментами иных типов ( фикобилипротеины, каротиноиды ) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра ( табл. 21 ). Два компонента фотосинтетического аппарата - реакционные центры и электронтранспортные системы - всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран - производных ЦПМ ( рис. 4 ). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна ( табл. 22 ). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны ( рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса светособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий ( рис. 4 ). В хлоросомах зеленых бактерий содержится весь бактериохлорофилл с, d или е (в зависимости от вида), а также небольшие количества бактериохлорофилла а, служащего промежуточным звеном при переносе энергии света от основного светособирающего бактериохлорофилла к бактериохлорофиллу а, локализованному в ЦПМ. С этой формы пигмента энергия света передается на модифицированную форму бактериохлорофилла а реакционного центра. Локализованные в хлоросомах светособирающие бактериохлорофиллы организованы в виде палочковидных структур диаметром 5-10 нм, расположенных параллельно длинной оси хлоросомы ( рис. 72, Б), Их высокоупорядоченная организация и упаковка осуществляются с помощью белковых молекул. В основании хлоросомы, примыкающем к ЦПМ, расположен слой молекул бактериохлорофилла а. Фотосинтез у цианобактерий: характеристика фототрофов, морфология и локализация фотосинтетического аппарата, механизм фотосинтеза. Цианобактерии: Oxyphotobacteria У них грамотриц. кл. стенка, много слизи или чехол, нет жгутиков, бывают газовые вакуоли, соседние клетки могут быть соединены микроплазмодесмами. Фотосинтетический аппарат: Рисунок:
Участие микроорганизмов в круговороте азота в природе. Азотфиксация. Встречается в воздухе (80%), в почве, в воде, органический азот в белках и нуклеотидах. Азотфиксация. 1. Свободноживущие азотфиксаторы: цианобактерии, строгие анаэробы, Azotobacter Beijerinkia, цианобактерии, фототрофы (строгие аэробы). Микроорганизмы, живущие в симбиозе с высшими растениями. А.Бобовые Rhizobium: аэробы, нуждающиеся в микроэлементах, неспорообразующие. Обладают экзоферментом (выдается наружу галактоуронедаза). Разрушают клеточную стенку волоска. В корневолоске образуют бактероидную нить. Внутри клубенька бактероидная зона, снаружи клетки корня. Там протекает азотфиксация. Фермент нитрогеназа. Б. Небобовые – актиномицеты.
Участие микроорганизмов в круговороте азота в природе. Денитрификация и ассимиляция. Важнейший элемент, входящий в состав белков, а следовательно, имеющий исключительное значение для жизни — это азот. В живых существах, населяющих планету, содержится примерно 15—20 млрд. т азота, в почвах (в 30-сантиметровом слое) на каждом гектаре имеется в среднем 5—15 т азота. - фиксация азота; - аммонификация; - нитрификация; - денитрификация. Денитрификация, протекающая под воздействием микробов, представляет собой восстановление нитратов с образованием в качестве • конечного продукта — молекулярного азота, возвращающегося из почвы в атмосферу. Вызывается этот процесс денитрифицирующими бактериями. Наиболее распространенные из них в природе: Tiolacillus denitrifi-cans — палочка, не образующая спор, факультативный анаэроб; Ps. fluo-rescens — подвижная палочка, выделяет зеленоватый пигмент, быстро разлагает нитраты; Ps. aeruginosa — бактерия сходна с предыдущей; Ps. Stutzeri — небольшая палочка, образующая цепочки, разлагает нитраты в анаэробных условиях. Ассимиляция – извлечение бактериями азота из нитратов для синтеза азотосодержащих клеточных компонентов нитратредуцирующих в нитратредукторов. NO3 – NO2 – NH3
Участие микроорганизмов в круговороте азота в природе. Нитрификация и Аммонификация. Аммонификация – процесс превращения органического азота (N) в NH4. (Гниение, минерализация) Белки: экзопротеазы. Нуклеиновые кислоты: экзонуклеазы. Бактерии: Bacillus, Pseudomonas, Micromycetes грамполож. Аммонификация мочевины Уробактерии образуют фермент уреазу. Под действием фермента уреазы происходит гидролиз мочевины с образованием карбоната аммония, который почти тотчас разлагается на составные компоненты – NH3, H2O, CO2. H2N-CO-NH2 + H2O → (NH4)2CO3 → 2NH3 + H2O + CO2 Бактерии, разлагающие мочевину, получили название уробактерий. К ним относятся Sporosarcina ureae, Micrococcus ureae, Bacillus pasteuri и Baccilus probatus. В качестве азота они используют аммиачные соли или свободный аммиак, образующийся при гидролизе мочевины. Углерод из мочевины уробактерии использовать не могут, так как он находится в сильно окисленной форме и при гидролизе не выделяется в виде углерода диоксида. Углерод уробактерии используют из различных органических соединений (соли лимонной, янтарной, яблочной, уксусной и других кислот, а также моносахариды, сахариды и крахмал). Нитрификация – окисление аммония (NH3) до нитрата (NO3). В почве является нежелательным процессом. Проходит в 2 стадии Первая стадия — окисление аммиака до нитрит-аниона , которое осуществляют нитрозные бактерии родов Nitrosomonas, Nitrosococcus и Nitrosospira (ранее выделялись также рода Nitrosolobus, Nitrosovibrio, но сейчас их представители включены в Nitrosospira ) по следующему механизму:1. NH3 + O2 + НАДН2 → NH2OH + H2O + НАД+ 2. NH2OH + H2O → HNO2 + 4H+ + 4e− 3. 1/2O2 + 2H+ + 2e− → H2O Ферментом для первой реакции служит аммиакмонооксигеназа. Гидроксиламин ингибирует работу фермента. В бесклеточных экстрактах восстановителем может служить НАД(Ф)·H. Следующую реакцию осуществляет гидроксиламиноксидоредуктаза. Окислителем в них служит цитохром c, с него электрон передаётся на убихинон и далее в дыхательную цепь, на цитохромоксидоредуктазу и, в конечном итоге, на кислород. При этом запасается энергия в виде трансмембранного протонного потенциала. Образование НАД(Ф)·H для фиксации углекислого газа в цикле Кальвина происходит путём обратного переноса части электронов. Вторая стадия — окисление аниона азотистой кислоты до аниона азотной, производимое нитратными бактериями (почвенный род Nitrobacter и водные Nitrospira, Nitrococcus, Nitrospina). Процесс протекает в одну реакцию: NO2− + H2O → NO3− + 2H+ + 2e− катализируемую нитрит: нитрат-оксидоредуктазой, локализованной в ЦПМ. Далее электроны передаются на цитохромы дыхательной цепи, в которой единственным пунктом транслокации протонов является цитохромоксидаза. Образование НАД(Ф)·H для фиксации углекислого газа также происходит путём обратного переноса электронов. Участвуют 2 типа бактерий: нитроазотные – грамотриц., полиморфные, подвижные (образуют слизь), аэробы; нитратные – грамотриц., полиморфные. |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 638; Нарушение авторского права страницы