Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мощность в цепи переменного тока



Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:

P=U⋅ I P=U⋅ I.

Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U∙ Iхарактеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:

p=u⋅ i p=u⋅ i.

Пусть напряжение на концах цепи меняется по гармоническому закону

u=Um⋅ cosω t u=Um⋅ cos⁡ ω t

(с тем же успехом, разумеется, вместо u=Um⋅ cosω t u=Um⋅ cos⁡ ω t можно было бы записать u=Um⋅ sinω t u=Um⋅ sin⁡ ω t), то и сила тока будет меняться со временем гармонически с той же частотой, но в общем случае будет сдвинута по фазе относительно напряжения:

i=Im⋅ cos(ω t+φ c) i=Im⋅ cos⁡ (ω t+φ c),

где φ c – сдвиг фаз между силой тока и напряжением. Поэтому для мгновенной мощности можно записать:

p=u⋅ i=Um⋅ Im⋅ cosω t⋅ cos(ω t+φ c) p=u⋅ i=Um⋅ Im⋅ cos⁡ ω t⋅ cos⁡ (ω t+φ c).

При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.

Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:

cosα ⋅ cosβ =cos(α − β )+cos(α +β )2 cos⁡ α ⋅ cos⁡ β =cos⁡ (α − β )+cos⁡ (α +β )2.

В рассматриваемом случае α = ω ∙ t и β = ω ∙ t + φ c. Поэтому

p=Um⋅ Im2[cosφ c+cos(2ω t+φ c)]=Um⋅ Im2cosφ c+Um⋅ Im2cos(2ω t+φ c) p=Um⋅ Im2[cos⁡ φ c+cos⁡ (2ω t+φ c)]=Um⋅ Im2cos⁡ φ c+Um⋅ Im2cos⁡ (2ω t+φ c).

Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю. Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:

P=Um⋅ Im2cosφ c P=Um⋅ Im2cos⁡ φ c. (10)

При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:

P=Um⋅ Im2=I2m⋅ R2 P=Um⋅ Im2=Im2⋅ R2.

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = I∙ U = I2R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим

P=I2m⋅ R2=I2⋅ R P=Im2⋅ R2=I2⋅ R или I2m2=I2 Im22=I2.

Действующим значением силы тока называют величину, в 2–√ 2 раз меньшую ее амплитудного значения:

I=Im2√ I=Im2.

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Аналогично можно доказать, что

действующее значение переменного напряжения в 2–√ 2 раз меньше его амплитудного значения:

U=Um2√ U=Um2.

Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:

P=Um2√ ⋅ Im2√ cosφ c=U⋅ Icosφ c P=Um2⋅ Im2cos⁡ φ c=U⋅ Icos⁡ φ c. (10)

Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз φ c между напряжением и током. Множитель cos φ c в формуле называется коэффициентом мощности.

В случае, когда φ c = ± π /2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при φ c = - π /2 (чисто индуктивное сопротивление участка цепи). График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.

Рис. 10

Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.

При проектировании цепей переменного тока нужно добиваться, чтобы cos φ c не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.

Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos φ c в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой. Это уменьшает коэффициент мощности всей цепи. Повышение cos φ c является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos φ c < 0, 85

 

Постоянный ток.

 

Термин постоянный ток не совсем корректен: в действительности для постоянного тока неизменным является прежде всего значение напряжения (измеряется в Вольтах), а не значение тока (измеряется в Амперах), хотя значение тока также может быть неизменным. Путаница возникла в результате того, что термин ток употребляется для описания электрических процессов вообще. Поэтому термин постоянный ток следует понимать как постоянное напряжение. Далее будем использовать термин именно в этом смысле.

Термин постоянный ток имеет несколько значений:

· Питающее напряжение, величина которого не зависит от времени. Пример: устройство запитано от источника постоянного тока. В данном смысле использование термина постоянный ток (так же, как и переменный ток) подчёркивает «силовой» характер данного сигнала, то есть это электрический сигнал, передающий мощность, предназначенный для питания электрических устройств. В других смыслах используют более точные термины: напряжение, сигнал и т.п.

· Постоянная составляющая сигнала.

· Термин также может использоваться не в смысле напряжения, а в смысле частоты сигнала (для постоянного тока она нулевая). Пример: рабочий диапазон частот: от постоянного тока до 1 МГц

Применение: Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами).


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 566; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь