Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Стероиды, стерины и стерины.



СТЕРОИДЫ, группа биологически важных прир. соед., в основе структуры к-рых лежит скелет циклопентанопер-гидрофенантрена (гонана, стерана; ф-ла I). Входят в состав всех растит. и животных организмов.

По номенклатуре ИЮПАК полная нумерация в стероидах производится так, как показано в ф-ле П. Если один или более атомов С отсутствуют, нумерация оставшейся части сохраняется. В формулах стероидов связи атомов или групп, располагающихся за плоскостью кольцевой системы (a-конфигурация), изображают пунктирной линией, атомы и группы, располагающиеся перед плоскостью (b-конфигурация), -жирной линией; связи с неопределенной конфигурацией обозначают волнистой линией. Назв. частично ненасыщенных стероидов производят от назв. насыщенных посредством окончания " ен". В названиях стероидов, содержащих внутри структуры трехчленное кольцо, вводится префикс " цикло" с цифровым указанием положения и стереохимией обозначения; общее назв. таких стероидов-циклостероиды.

Природные стероиды имеют транс- или цис-сочленение колец А и В, транс-сочленение колец В и С и обычно транс-сочленекие С и D. Циклогексановые кольца, как правило, находятся в энергетически выгодной конформации кресла. Большинство стероидов содержат гл. обр. группы СН3 у атомов С-10 и С-13, группу ОН (или кетогруппу) у атома С-3 и боковую цепь у атома С-17, содержащую до 8-10 атомов углерода.

В зависимости от структуры боковой цепи и наличия групп СН3 различают производные эстрана (ф-ла III), андростана (IV), прегнана (Vа), холана (Vб) и холестана (Vв).

В химии стероидов широко применяют также и тривиальные назв., напр. холест-5-ен-3b-ол наз. холестерином, 3a, 7a, 12а-тригидрокси-24-карбокси-5b-холан-холевой к-той.

Стероиды включают в себя стерты (стеролы), сапонины, стероидные алкалоиды, стероидные гормоны, желчные кислоты, желчные спирты, гликозиды сердечные, витамин D.

Все стероиды (подобно др. изопреноидам) объединяются одной схемой биогенеза: в живой клетке из уксусной k-ты через ацетилкофермент А и мевалоновую к-ту строятся изопрено-вые фрагменты -изопентенилпирофосфат и изомерный ему диметилаллилпирофосфат, к-рые путем конденсации образуют общий биогенетич. предшественник -сквален; эпоксид последнего при циклизации с послед. окислит. отщеплением неск. углеродных атомов превращается в стероид.

Стероиды выделяют из спинного мозга и желчи рогатого скота, из щелочного гидролизата дрожжей, растит. масел и животных жиров, отходов целлюлозно-бумажной пром-сти, синтезируют из неприродного сырья. Полный синтез осуществлен для мн. природных стероидов-холестерина, андрогенов, гестагенов, кортикостероидов, эстрогенов и др.

Стероиды-биол. регуляторы. Способность к биосинтезу стероидов наиб. выражена у высших позвоночных. Насекомые стероиды не вырабатывают, а получают с пищей, однако ф-ция их линьки контролируется стероидами.

Применяют стероиды гл. обр. в медицине (лек. ср-ва, гормоны и др.).

Делятся на омыляемую и не омыляемые фракции

Холестери́ н (др.-греч. χ ο λ ή — желчь и σ τ ε ρ ε ό ς — твёрдый; синоним: холестерол) — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариоты). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей.[1] В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включая кортизол, кортизон, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака

Желчные кислоты человека

Основными типами желчных кислот, имеющимися в организме человека, являются так называемые первичные желчные кислоты (первично секретируемые печенью): холевая кислота (3α, 7α, 12α -триокси-5β -холановая кислота) и хенодезоксихолевая кислота (3α, 7α -диокси-5β -холановая кислота), а также вторичные (образуются из первичных желчных кислот в толстой кишке под действием кишечной микрофлоры): дезоксихолевая кислота (3α, 12α -диокси-5β -холановая кислота), литохолевая (3α -маноокси-5β -холановая кислота), аллохолевая и урсодезоксихолевая кислоты. Из вторичных в кишечно-печёночной циркуляции во влияющем на физиологию количестве участвует только дезоксихолевая кислота, всасываемая в кровь и секретируемая затем печенью в составе желчи.

Аллохолевая, урсодезоксихолевая и литохолевая кислоты являются стереоизомерами холевой и дезоксихолевой кислот.

Все желчные кислоты человека имеют в составе своих молекул 24 атома углерода.

В желчи желчного пузыря человека желчные кислоты представлены так называемыми парными кислотами: гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой, таурохолевой, тауродезоксихолевой и таурохенодезоксихолевой кислотой — соединениями (конъюгатами) холевой, дезоксихолевой и хенодезоксихолевой кислот с глицином и таурином.[2][3][4]

Витамин D — группа биологически активных веществ (в том числе эргокальциферол и холекальциферол). Витамины группы D являются незаменимой частью пищевого рациона человека. Суточная потребность: 10-25 мкг.

Растворим в жирах. Состоит из феролов, приобретающих активность при ультрафиолетовом облучении. В организме этот процесс осуществляется в коже. Дефицит витамина D — явление очень распространённое, и может вызвать проблемы роста клеток органов, наибольшим из которых является кожа. Учёные также занимаются поисками доказательства того, что долговременный дефицит витамина D приводит к заболеванию раком.

Функции

Витамин D регулирует усвоение минералов кальция и фосфора, уровень содержания их в крови и поступление их в костную ткань и зубы. Вместе с витамином A и кальцием или фосфором защищает организм от простуды, диабета, глазных и кожных заболеваний. Он также способствует предотвращению зубного кариеса и патологий дёсен, помогает бороться с остеопорозом и ускоряет заживление переломов.

 

16. Фосфолипиды.Фосфолипиды (фосфоглицериды) - это сложные липиды, производные фосфатидной кислоты. Липидам принадлежит главная роль в образовании мембран клеток. Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином.

 

 

В мембранах имеются фосфолипиды двух типов - глицерофосфолипиды и сфингофосфолипиды (в данном материале не рассматриваем). В состав глицерофосфолипидов входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения.

Общая формула для фосфолипидов представлена рисунком " Фосфоглицерид": где R1 и R2 - радикалы высших жирных кислот (насыщенные и ненасыщенные жирные кислоты соответственно), R3 - радикал азотистого основания, соединенный через гидроксил фосфата эфирной связью с производным фосфатидной кислоты.

Характерным для всех фосфолипидов является то, что одна часть их молекулы (радикалы R1 и R2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду радикала R3.

Из всех липидов фосфолипиды обладают наиболее выраженными полярными свойствами. При помещении фосфолипидов в воду, в истинный раствор переходит лишь небольшая их часть, основная же масса " растворенного" липида находится в водных системах в форме мицелл. Другими конфигурациями молекул фосфолипидов являются двухслойная (типичное состояние для фосфолипидов биомембран) и гексагональная. Конфигурация молекулы фосфолипида зависит от внутренних свойств самой молекулы (ее строение) и от внешних факторов (гидратация, температура, рН, ионная сила раствора).

Представленная рисунком " Фосфоглицерид" молекула рассматривается как основа для всех сложных липидов, название которых зависит от азотистого основания (холин, этаноламин, серин - выделено красным), шестиуглеродного сахароспирта - инозитол или представлена остатками глицерина - кардиолипин. Полярные группы, в том числе, позволяют разделить фосфолипиды на классы.

Существует несколько классов фосфолипидов:

1." нейтральные" фосфолипиды - имеют отрицательно заряженную фосфатную группу и положительно заряженную аминогруппу, что в сумме вызывает электрически нейтральное состояние. К ним относятся:

а)фосфатидилхолин (старое название - лецитин) - в молекуле которого соединены глицерин, высшие жирные кислоты, фосфорная кислота и азотистое основание - холин

б)фосфатидилэтаноламин (кефалин) - его отличие от лецитина состоит в том, что он имеет азотистое основание - этаноламин

Фосфатидилхолины и фосфотидилэтаноламины встречаются в организме животных и высших растений в наибольшем количестве. Эти две группы фосфоглицеридов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток в плане стабилизации их двухслойности.

2." отрицательно заряженные" - анионные фосфолипиды - имеют отрицательно заряженную фосфатную группу. К ним относятся:

а)фосфатидилсерин - в молекуле азотистым соединением служит остаток аминокислоты серина.

Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфатидилэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.

б)фосфатидилинозитол - фосфолипид, не содержащий азот. Радикалом (R3) в этом подклассе фосфоглицеридов является шестиуглеродный циклический спирт - инозитол.

Фосфатидилинозитолы довольно широко распространены в природе. Обнаружены у животных, растений и микроорганизмов. В животном организме они найдены в мозге, печени, легких.

3)фосфатидилглицерины:

а)полиглицеринфосфат - кардиолипин; остов молекулы кардиолипина включает остатки глицерина, соединенные друг с другом фосфодиэфирными мостиками через положение 1 и 3, гидроксильные группы двух внешних остатков глицерина этерифицированы жирными кислотами (R1, R2, R3, R4 - радикалы высших жирных кислот).

Кардиолипины входят состав мембран митохондрий и бактерий. Во внутренней мембране митохондрий до 20% от всех фосфолипидов принадлежит кардиолипину. Кардиолипин не выявляется на плазменных мембранах, где до 60% от общего пула фосфолипидов составляют фосфатидилхолин и сфингомиелин, до 30% - фосфатидилэтаноламин, до 15% - фосфатидилсерин и менее 5% - фосфатидилинозитол.

Двойной липидный слой мембран. В клеточной мембране фосфолипиды образуют двойной слой, в котором гидрофобные цепи жирных кислот направлены внутрь мембраны, а гидрофильные полярные группы кнаружи. Мембранные белки могут быть частично или полностью погружены в мембрану и включаться в состав липидного слоя (интегральные белки) или располагаться на ее поверхности (периферические белки). Периферические белки присоединены к мембране за счет полярных или ионных взаимодействий. Некоторые интегральные белки могут прошивать мембрану насквозь, выступая за ее пределы по обе стороны, например, белок гликофорин, входящий в состав плазматической мембраны эритроцита.

 

17. ГликолипидыГликолипиды — сложные липиды, содержащие углеводный фрагмент. В животных тканях гликолипиды представлены в основном гликосфинголипидами, состоящими из церамида, построенного из спирта сфингозина и остатка жирной кислоты, остатков сахаров. К гликолипидам относятся галактозилцерамиды глюкозилцерамиды. Галактозилцерамиды встречаются в основном в нервной ткани, содержат гексозу и жирные кислоты с 24 углеродными атомами (лигноцериновую, нервоновую или цереброновую). Сульфогалактозилцерамиды имеют в своем составе остаток серной кислоты, присоединенный к третьему углеродному атому гексозы. Сульфогалактозилцерамиды содержатся в белом веществе мозга. Глюкозилцерамиды содержат вместо остатка галактозы остаток глюкозы. Ганглиозиды содержатся в больших количествах в нервной ткани, выполняют рецепторные функции.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

 

18.Нуклеотиды, нуклеозиды, нуклеиновые кислоты.Нуклеотиды состоят из следующих типов структурных компонентов(азотистые основания, углевод или его производное, 1или неск. остатков H3PO4. Наиболее распространены пуриновые и перемидиновые основания. Пуриновые основания(аденин, гуанин) Для них характерны след. Виды таутомерии: 1, лактим-лактамная 2, прототропная-перемещение атома Н между положениями 7 и 9. Нуклеотиды являются мономерными звеньями, из которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды выполняют роль коферментов и участвуют в обмене веществ.

Нуклеозиды.

Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой или дезоксирибозой.

Между аномерным атомом углерода моносахарида и атомом азота в положении 1 пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная связь.

В зависимости от природы моносахаридного остатка нуклеозиды делят на рибонуклеозиды(содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия нуклеозидов строят на основе тривиальных названий нуклеиновых оснований, добавляя окончание –идин для производных пиримидина и -озин для производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и дезоксирибозой, к которому приставка дезокси- не добавляется, так как тимин образует нуклеозиды с рибозой лишь в очень редких случаях.

Для обозначения нуклеозидов используются однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К обозначениям дезоксирибонуклеозидов ( за исключением тимидина) добавляется буква ”д”.

Наряду с представленными на схеме основными нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды, содержащие модифицированные нуклеиновые основания (см. выше).

В природе нуклеозиды встречаются также в свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые отличия от обычных нуклеозидов в строении либо углеводной части, либо гетероциклического основания, что позволяет им выступать в качестве антиметаболитов, чем и объясняется их антибиотическая активность.

Как N-гликозиды, нуклеозиды устойчивы к действию щелочей, но расщепляются под действием кислот с образованием свободного моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются значительно легче пиримидиновых.

Нуклеиновые кислоты – это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанныефосфодиэфирными связями.Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. последовательность нуклеотидов отражает первичную структуру белков (Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.Нуклеиновые кислоты образуют разнообразные соединения с белками – нуклеопротеиды, или нуклеопротеины.

 

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 56; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.032 с.)
Главная | Случайная страница | Обратная связь