Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Классификация алюминиевых сплавов
Наибольшее распространение получили сплавы Al-Cu, Al-Si, Al-Mg, Al-Cu-Mg и другие. Все сплавы алюминия можно разделить на деформируемые, предназначенные для получения полуфабрикатов (листов, плит, прутков и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки, и литейные, предназначенные для фасонного литья. Сплавы алюминия, обладая хорошей технологичностью во всех стадиях передела, малой плотностью, высокой коррозийной стойкостью, при достаточной прочности, пластичности и вязкости нашли широкое применение в авиации, судостроении, строительстве и других отраслях народного хозяйства.
5.3. Деформируемые алюминиевые сплавы, Дюралюмины.Дюралюминами называются сплавы Al-Cu-Mg, в которые дополнительно вводят марганец. Типичным дюралюмином является сплав Д1. Марганец повышает стойкость дюралюмина против коррозии, а присутствуя в виде дисперсных частиц фазы Т, повышает температуру рекристаллизации и улучшает механические свойства. Дюралюмин, изготовляемый в листах, для защиты от коррозии подвергают плакированию, т.е. покрытию тонким слоем алюминия высокой чистоты. Из сплава Д16 изготовляют обшивки, шпангоуты, стрингера и лонжероны самолетов, силовые каркасы, строительные конструкции, кузова грузовых автомобилей и т.д. Сплав Д16 - s0.2=400МПа, sв=540МПа, d=11%. Сплавы авиаль (АВ). Эти сплавы уступают дюралюминам по прочности, но обладают лучшей пластичностью в холодном и горячем состояниях. Авиаль удовлетворительно обрабатывается резанием (после закалки и старения) и сваривается контактной и аргонодуговой сваркой. Сплав обладает высокой общей сопротивляемостью коррозии, но склонен к межкристаллической. Из сплава АВ изготовляют различные полуфабрикаты (листы, трубы и т.д.), используемые для элементов конструкций, несущих умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованые детали двигателей, рамы, двери, для которых требуется высокая пластичность в холодном и горячем состояниях. Сплав АВ - s0.2=200МПа, sв=260МПа, d=15%. Высокопрочные сплавы.Предел прочности этих сплавов достигает 550-700МПа, но при меньшей пластичности, чем у дуралюминов. Представителем высокопрочных алюминиевых сплавов является сплав В95. При увеличении содержания цинка и магния прочность сплавов повышается, а их пластичность и коррозийная стойкость понижаются. Добавки марганца и хрома улучшают коррозийную стойкость. Сплавы обладают хорошей пластичностью в горячем состоянии и сравнительно легко деформируются в холодном состоянии после отжига. Сплав В95 хорощо обрабатывается резанием и сваривается точечной сваркой, его применяют в самолетостроении для нагруженных конструкций, работающих длительное время при t< =100¸ 120°С. Сплав В95 рекомендуется для сжатых зон конструкций и для деталей без концентраторов напряжений. Сплав В95 - s0.2=530-550МПа, sв=560-600МПа, d=8%. Сплавы для ковки и штамповки. Сплавы этого типа отличаются высокой пластичностью и удовлетворительным литейными свойствами, позволяющими получить качественные слитки. Сплав АК6 используют для деталей сложной формы и средней прочности, изготовление которых требует высокой пластичности в горячем состоянии. Сплав АК8 рекомендуют для тяжелонагруженных штампованных деталей. Сплав АК8 - s0.2=300МПа, sв=480МПа, d=10%. Жаропрочные сплавы. Эти сплавы используют для деталей, работающих при температуре до 300°С. Жаропрочные сплавы имеют более сложный химический состав, чем рассмотренные выше алюминиевые сплавы. Их дополнительно легируют железом, никелем и титаном. Сплав Д20 - s0.2=250МПа, sв=400МПа, d=12%.
5.4. Деформируемые алюминиевые сплавы, К этим сплавам относятся сплавы алюминия с марганцем или с магнием. Упрочнение сплавов достигается в результате образования твердого раствора и в меньшей степени избыточных фаз. Сплавы легко обрабатываются давлением, хорошо свариваются и обладают высокой коррозийной стойкостью. Обработка резанием затруднена. Сплавы (АМц, АМг2, АМг3) применяют для сварных и клепанных элементов конструкций, испытывающих небольшие нагрузки и требующие высокого сопротивления коррозии. Сплав АМг3 - sв=220МПа, s0.2=110МПа, d=20%. Литейные алюминиевые сплавы Сплавы для фасонного литья должны обладать высокой жидкотекучестью, сравнительно небольшой усадкой, малой склонностью к образованию горячих трещин и пористости в сочетании с хорошими механическими свойствами, сопротивлением коррозии и др. Сплавы Al-Si (силумины). Отличаются высокими литейными свойствами, а отливки - большой плотностью. Сплавы Al-Si (АЛ2, АЛ4, АЛ9) сравнительно легко обрабатываются резанием. Заварку дефектов можно производить газовой и аргонодуговой сваркой. Сплав АЛ9 - sв=200МПа, s0.2=140МПа, d=5%. Сплавы Al-Cu.Эти сплавы (АЛ7, АЛ19) после термической обработки имеют высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием. Литейные свойства низкие. Сплав АЛ7 используют для отливки небольших деталей простой формы, сплав склонен к хрупкому разрушению. Сплав АЛ7 - sв=240МПа, s0.2=160МПа, d=7%. Сплавы Al-Mg. Имеют низкие литейные свойства. Характерной особенностью этих сплавов является хорошая коррозийная стойкость, повышенные механические свойства и обрабатываемость резанием. Сплавы АЛ8, АЛ27, АЛ13 и АЛ22 предназначены для отливок, работающих во влажной атмосфере, например, в судостроении и авиации. Сплав АЛ8 - sв=350МПа, s0.2=170МПа, d=10%. Жаропрочные сплавы. Наибольшее применение получил сплав АЛ1, из которого изготавливают поршни, головки цилиндров и другие детали, работающие при температуре 275-300°С. Сплав АЛ1 - sв=260МПа, s0.2=200МПа, d=0.6%.
Примеры расшифровки алюминиевых сплавов
1. Д16; Д- дюралюминий 16- условный номер сплава 2. АК4- алюминиевый сплав для ковки и штамповки 4- условный номер сплава 3. АЛ3- алюминиевый литейный сплав 3 – условный номер сплава
Магний и сплавы на его основе Магний Магний – металл светло-серого цвета. Характерным свойством магния является его малая плотность (1.74г/см3). Температура плавления магния 650°С. Кристаллическая решетка гексагональная. Технический магний выпускают трех марок МГ90, МГ95 и МГ96. Механические свойства литого магния: sв=115МПа, s0.2=25МПа, d=8%, 30НВ. На воздухе магний легко воспламеняется. Используется магний в пиротехнике и химической промышленности.
Сплавы на основе магния Сплавы магния обладают малой плотностью, высокой удельной прочностью, хорошо поглощают вибрации, что определило их широкое использование в авиационной и ракетной технике. Однако сплавы магния имеют низкий модуль нормальной упругости 43000МПа и плохо сопротивляются коррозии. Литейные сплавы. Широко применяется сплав МЛ5, в котором сочетаются высокие механические и литейные свойства. Он используется для литья нагруженных крупногабаритных отливок. Сплав МЛ6 обладает лучшими литейными свойствами, чем МЛ5, и предназначается для изготовления тяжелонагруженных деталей. Сплав МЛ5 - sв=226МПа, s0.2=85МПа, d=5%. Деформируемые сплавы. Эти сплавы изготовляют в виде горячекатаных прутков, полос, профилей, а также поковок и штамповых заготовок. Сплав МА1 обладает сравнительно высокой технологической пластичностью, хорошей свариваемостью и коррозионной стойкостью. Сплав МА2-1 обладает достаточно высокими механическими свойствами, хорошей свариваемостью, однако склонен к коррозии под напряжением, поддается всем видам листовой штамповки и легко прокатывается. Сплав МА1 - sв=190-220МПа, s0.2=120-140МПа, d=5-10%.
Медь и сплавы на ее основе Медь Медь – металл красного, в изломе розового цвета. Температура плавления 1083°С. Кристаллическая решетка ГЦК. Плотность меди 8.94г/см3. Медь обладает высокими электропроводимостью и электропроводимостью. В зависимости от чистоты медь изготавливают следующих марок: М00, М0, М1, М2, М3. Присутствующие в меди примеси оказывают большое влияние на ее свойства. Медь хорошо сопротивляется коррозии, легко обрабатывается давлением, но плохо резанием и имеет невысокие литейные свойства из-за большой усадки.
Сплавы на основе меди Различают две основные группы медных сплавов: 1) латуни - сплавы меди с цинком; 2) бронзы - сплавы меди с другими элементами. Медные сплавы обладают высокими механическими и техническими свойствами, хорошо сопротивляются коррозии и износу. Латуни. Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк. При введении других элементов (кроме цинка) латуни называют специальными по наименованию элементов, например железофосфорномарганцевая латунь и т.п. В сравнение с медью латуни обладают большей прочностью, коррозионной стойкостью и лучшей обрабатываемостью (резанием, литьем, давлением). Латуни содержат до 40-45% цинка. При большом содержании цинка снижается прочность латуни и увеличивается ее хрупкость. Содержание легирующих элементов в специальных латунях не превышает 7-9%. Сплав обозначают начальной буквой Л -латунь. Затем следуют первые буквы основных элементов образующих сплавов: Ц -цинк, О -олово, Мц -марганец, Ж -железо, Ф -фосфор, Б- берилий, и т.д. Цифры, следующие за буквами, указывают на количество легирующего элемента в процентах. Например, ЛАЖМ ц66-6-3-2 алюминиевожелезомарганцовистая латунь, содержащая 66% меди, 6% алюминия, 3% железа, и 2% марганца, остальное-цинк. По технологическому признаку латуни, как и все сплавы цветных металлов, подразделяют на литейные и деформируемые. Литейные латуни предназначены для изготовления фасонных отливок, их поставляют в виде чушек. Деформируемые латуни выпускают в виде простых латуней, например Л -90 (томпак), Л- 80 (полутомпак), и сложных латуней, например ЛАЖ 60-1-1, ЛС 63-6 и др. Латуни поставляют в виде полуфабрикатов-проволоки, прутков, лент, полос, листов, труб и других видов прокатных и прессованных изделий. Латуни широко применяют в общем и химическом машиностроении.
Пример расшифровки латуни
ЛАЖМ ц66-6-3-2 Л - латунь 66% меди А - алюминий 6% Ж - железо 3% М ц- марганец 2% Остальное цинк Л 90-латунь 90%меди Остальное цинк.
Бронзы.Сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием называют бронзами. В зависимости от введенного элемента бронзы называют оловянными, алюминиевыми и т.д. Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием. Для повышения механических характеристик и придания особых свойств бронзы легируют железом, никелем, титаном, цинком, фосфором. Введение марганца способствует повышению коррозионной стойкости, никеля-пластичности, железа-прочности, цинка-улучшению литейных свойств, свинца-улучшению обрабатываемости. Бронзы маркируют буквами Бр, правее ставят элементы, входящее в бронзу: О -олово, Ц -цинк, С -свинец, А -алюминий, Ж -железо, Мц -марганец и др. Затем ставят цифры, обозначающее среднее содержание элементов в процентах (цифру, обозначающую содержание меди в бронзе, не ставят). Например, марка БрОЦС 5-5-5 означает, бронза содержит олова, свинца и цинка по 5%, остальное-медь (85%). Оловянные бронзы содержат в среднем 4-6% олова, имеют высокие механические (σ в=150-350 МП а; d=3-5%; твердость НВ 60-90), антифрикционные и антикоррозийные свойства; хорошо отливаются и обрабатываются резанием. Для улучшения качества в оловянные бронзы вводят свинец, повышающий антифрикционные свойства и обрабатываемость; цинк, улучшающий литейные, механические и антифрикционные свойства. Различают деформируемые и литейные оловянные бронзы. Деформируемые бронзы поставляются в виде полуфабрикатов (прутки, проволоки, ленты, полосы) в нагартованном (твердом) и отожженном (мягком) состояниях. Эти бронзы применяют для вкладышей подшипников, втулок деталей приборов и т.д. Литейные оловянные бронзы содержат большое количество олова (до 15%), цинка (4-10%), свинца (3-6%), фосфора (0.4-1, 0%). Литейные бронзы применяют для получения различных фасонных отливок. Высокая стоимость и дефицитность олова – основной недостаток оловянных бронз. Безоловянные бронзы содержат алюминий, железо, марганец, бериллий, кремний, свинец или различное сочетание этих элементов. Алюминиевые бронзы содержат 4-11% алюминия. Алюминиевые бронзы имеют высокую коррозионную стойкость, хорошие механические и технологические свойства. Эти бронзы хорошо обрабатываются давлением в горячем состоянии, а при содержании алюминия до 8%-и в холодном состоянии. Бронзы, содержащие 9-11% алюминия, а также железо, никель, марганец, упрочняются термической обработкой (закалка и отпуск). Наиболее поддающаяся закалке БрАНЖ 10-4-4 после закалки (980°С)и отпуска (400°С) повышает твердость с НВ 170-200 до НВ 400. Марганцовистые бронзы ( БрМЦ 5) имеют сравнительно невысокие механические свойства, но обладают высокой пластичностью и хорошей сопротивляемостью коррозии, а также сохраняют механические свойства при повышенных температурах. Свинцовистые бронзы ( БрС 30) отличаются высокими антикоррозионными свойствами и теплопроводностью (в четыре раза большей, чем у оловянных бронз); применяют для высоконагруженных подшипников с большими удельными давлениями. Бериллиевые бронзы ( БрБ 2) после термообработки имеют высокие механические свойства, например у БрБ 2 sв=1250 МП а, НВ 350, высокий предел упругости, хорошую коррозионную стойкость, теплостойкость. Из бериллиевых бронз изготавливают детали особо ответственного назначения. Кремнистые бронзы ( БрКН 1-3, БрКМ ц3-1) применяют как заменители дорогостоящих бериллиевых бронз. Пример расшифровки бронз Б р ОЦС 5-5-5 Ц- цинк 5% Б р- бронза С- свинец 5 О - олово 5% Остальное медь. |
Последнее изменение этой страницы: 2017-04-12; Просмотров: 57; Нарушение авторского права страницы