Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Бумажно-масляные конденсаторы



1.8.27. Бумажно-масляные конденсаторы связи, отбора мощности, делительные конденсаторы, конденсаторы продольной компенсации и конденсаторы для повышения коэффициента мощности испытываются в объеме, предусмотренном настоящим параграфом; конденсаторы для повышения коэффициента мощности напряжением ниже 1 кВ - по п. 1, 4, 5; конденсаторы для повышения коэффициента мощности напряжением 1 кВ и выше - по п. 1, 2, 4, 5; конденсаторы связи, отбора мощности и делительные конденсаторы - по п. 1-4.

Таблица 1.8.28. Наибольшее допустимое отклонение емкости конденсаторов

Наименование или тип конденсатора Допустимое отклонение, %
Конденсаторы для повышения коэффициента мощности напряжением:  
— до 1050 В ±10
— выше 1050 В +10 -5
Конденсаторы типов:  
— СМР-66/ , СМР-110/ +10 -5
— СМР-166/ , СМР-133/ , ОМР-15 ±5
— ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55, ДМРУ-110 ±10

Таблица 1.8.29. Испытательное напряжение промышленной частоты конденсаторов для повышения коэффициента мощности

Испытуемая изоляция Испытательное напряжение, кВ, для конденсаторов с рабочим напряжением, кВ
0, 22 0, 38 0, 50 0, 66 3, 15 6, 30 10, 50
Между обкладками 0, 42 0, 72 0, 95 1, 25 5, 9 11, 8
Относительно корпуса 2, 1 2, 1 2, 1 5, 1 5, 1 15, 3 21, 3

Таблица 1.8.30. Испытательное напряжение промышленной частоты для конденсаторов связи, отбора мощности и делительных конденсаторов

Тип конденсатора Испытательное напряжение элементов конденсатора, кВ
СМР-66/
СМР-110/ 193, 5
СМР-166/ 235, 8
ОМР-15 49, 5
ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55
ДМРУ-110

1. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2, 5 кВ. Сопротивление изоляции между выводами и относительно корпуса конденсатора и отношение не нормируются.

2. Измерение емкости. Производится при температуре 15-35°С. Измеренная емкость должна соответствовать паспортным данным с учетом погрешности измерения и приведенных в табл. 1.8.28 допусков.

Таблица 1.8.31. Испытательное напряжение для конденсаторов продольной компенсации

Тип конденсатора Испытательное напряжение, кВ
промышленной частоты относительно корпуса постоянного тока между обкладками конденсатора
КПМ-0, 6-50-1 16, 2 4, 2
КПМ-0, 6-25-1 16, 2 4, 2
КМП-1-50-1 16, 2 7, 0
КМП-1-50-1-1 - 7, 0

3. Измерение тангенса угла диэлектрических потерь. Производится для конденсаторов связи, конденсаторов отбора мощности и делительных конденсаторов. Измеренные значения тангенса угла диэлектрических потерь для конденсаторов всех типов при температуре 15-35°С не должны превышать 0, 4%.

4. Испытание повышенным напряжением. Испытательные напряжения конденсаторов для повышения коэффициента мощности приведены в табл. 1.8.29; для конденсаторов связи, конденсаторов отбора мощности и делительных конденсаторов - в табл. 1.8.30 и конденсаторов продольной компенсации - в табл. 1.8.31.

Продолжительность приложения испытательного напряжения 1 мин.

При отсутствии источника тока достаточной мощности испытания повышенным напряжением промышленной частоты могут быть заменены испытанием выпрямленным напряжением удвоенного значения по отношению к указанному в табл. 1.8.29-1.8.31.

Испытание повышенным напряжением промышленной частоты относительно корпуса изоляции конденсаторов, предназначенных для повышения коэффициента мощности (или конденсаторов продольной компенсации) и имеющих вывод, соединенный с корпусом, не производится.

5. Испытание батареи конденсаторов трехкратным включением. Производится включением на номинальное напряжение с контролем значений токов по каждой фазе. Токи в различных фазах должны отличаться один от другого не более чем на 5%.

Вентильные разрядники

1.8.28. Вентильные разрядники после установки на месте монтажа испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления элемента разрядника. Производится мегаомметром на напряжение 2, 5 кВ. Сопротивление изоляции элемента не нормируется. Для оценки изоляции сопоставляются измеренные значения сопротивлений изоляции элементов одной и той же фазы разрядника; кроме того, эти значения сравниваются с сопротивлением изоляции элементов других фаз комплекта или данными завода-изготовителя.

2. Измерение тока проводимости (тока утечки). Допустимые токи проводимости (токи утечки) отдельных элементов вентильных разрядников приведены в табл. 1.8.32.

Таблица 1.8.32. Ток проводимости (утечки) элементов вентильных разрядников

Тип разрядника или его элементов Выпрямленное напряжение, приложенное к элементу разрядника, кВ Ток проводимости элемента разрядника, мкА Верхний предел тока утечки, мкА
РВВМ-3РВВМ-6РВВМ-10 400-620 -
РВС-15РВС-20 РВС-33, РВС-35 400-620 -
РВО-35 70-130 -
РВМ-3 380-450 -
РВМ-6 120-220 -
РВМ-10 200-280 -
РВМ-15 500-700 -
РВМ-20 500-700 -
РВП-3 -
РВП-6 -
РВП-10 -
Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220, РВМГ-330, РВМГ-500 900-1300 -
Основной элемент разрядника серии РВМК 900-1300 -
Искровой элемент разрядника серии РВМК 900-1300 -
Основной элемент разрядников РВМК-330П, РВМК-500П 900-1300 -

Таблица 1.8.33. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте

Тип элемента Пробивное напряжение, кВ
Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220 59-73
Элемент разрядников РВМГ-330, РВМГ-500 60-75
Основной элемент разрядников РВМК-330, РВМК-500 40-53
Искровой элемент разрядников РВМК-330, РВМК-500, РВМК-550П 70-85
Основной элемент разрядников РВМК-500П 43-54

3. Измерение пробивных напряжений при промышленной частоте. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте должно быть в пределах значений, указанных в табл. 1.8.33.

Измерение пробивных напряжений промышленной частоты разрядников с шунтирующими резисторами допускается производить на испытательной установке, позволяющей ограничивать ток через разрядник до 0, 1 А и время приложения напряжения до 0, 5 с.

Трубчатые разрядники

1.8.29. Трубчатые разрядники испытываются в объеме, предусмотренном настоящим параграфом.

1. Проверка состояния поверхности разрядника. Производится путем осмотра перед установкой разрядника на опору. Наружная поверхность разрядника не должна иметь трещин и отслоений.

2. Измерение внешнего искрового промежутка. Производится на опоре установки разрядника. Искровой промежуток не должен отличаться от заданного.

3. Проверка расположения зон выхлопа. Производится после установки разрядников. Зоны выхлопа не должны пересекаться и охватывать элементы конструкций и проводов, имеющих потенциал, отличающийся от потенциала открытого конца разрядника.


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 473; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь