Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Регистрация рассеянного излучения



 

Современные оптические волноводы обладают очень маленькими потерями (вплоть до 0, 2 дБ/км и менее на длине волны 1, 55 мкм) – это позволяет передавать информацию на значительные расстояния без необходимости усиления сигнала. Расстояния между участками ретрансляции составляет более 100 км, что требует генерации световых импульсов значительной мощности. Высокие мощности входного светового потока создают значительное по величине рассеяние на ближайших к ретрансляторам участках, которые можно использовать для формирования каналов утечки информации. Современные приемники оптического излучения позволяют регистрировать световые потоки состоящие практически из одного фотона с временным разрешением менее 1 нс, что соответствует регистрации оптической мощности излучения менее 10-10 Вт.

Рассеянное излучение позволяет сформировать каналы утечки информации, основанные на следующих физических принципах:

прямое измерение рассеянного излучения на длинах волн носителя информации;

регистрация рассеянного излучения на комбинационных частотах;

специальная “обработка” оптоволокна внешними полями (тепловым, электромагнитным, радиационным), с целью увеличения интенсивности рассеянного излучения.

С помощью внешнего воздействия можно усилить потери в световоде на локальных участках формирования каналов утечки, что вызовет увеличение сигнала утечки.

12.1.4 Параметрические методы регистрации проходящего излучения

Оптическое излучение, являющееся носителем информации, при распространении по оптоволокну вызывает изменение его физических свойств. Модуляцию свойств оптоволокна в зависимости от интенсивности световых импульсов можно регистрировать специальными высокочувствительными устройствами. Изменение свойств оптоволокна является основой для формирования канала утечки информации. Среди них можно выделить следующие параметры оптоволокна, модулируемые световым потоком:

- показатель преломления;

- показатель поглощения при прохождении света;

- малые изменения геометрических размеров (фотоупругий эффект);

- регистрация модуляции свойств поверхности волокна.

Существующая техника измерений позволяет регистрировать очень малые изменения свойств волокна. В частности, применение спектроскопии потерь позволяет регистрировать незначительное изменение показателя поглощения, которое вызывается информационным потоком света.

В заключение надо отметить, что существует много других способов несанкционированного доступа и способов съема информации с оптоволокна. Это опровергает утверждение о невозможности формирования канала утечки из оптического волновода, которое прослеживается в повседневной жизни и в российских нормативных документах. В документе закреплено, что при использовании волоконно-оптических линий связи не требуется шифрование конфиденциальной информации, в отличии от других каналов передачи информации. Особенностью волоконно-оптических телекоммуникаций является необходимость физического контакта с линией связи для формирования канала утечки.


 

Методы защиты информации, передаваемой по ВОЛС

Физические методы защиты

 

Разработка технических средств защиты от несанкционированного доступа (НД) к информационным сигналам, передаваемым по ОВ.

Данная группа работ связана с разработкой конструкционных, механических и электрических средств защиты от НД к оптическим кабелям (ОК), муфтам и ОВ. Одни из видов средств защиты этой группы построены так, чтобы затруднить механическую разделку кабеля и воспрепятствовать доступу к ОВ. Подобные средства защиты широко используются и в традиционных проводных сетях специальной связи. Также перспективным представляется использование пары продольных силовых элементов ОК, которые представляют собой две стальные проволоки, размещенные симметрично в полиэтиленовой оболочке, и используемые для дистанционного питания и контроля датчиков, установленных в муфтах, и контроля НД. Целесообразно также применение комплекта для защиты места сварки, который заполняет место сварки непрозрачным затвердевающим гелем. Одним из предложенных методов защиты является использование многослойного оптического волокна со специальной структурой отражающих и защитных оболочек. Конструкция такого волокна представляет собой многослойную структуру с одномодовой сердцевиной. Подобранное соотношение коэффициентов преломления слоев позволяет передавать по кольцевому направляющему слою многомодовый контрольный шумовой оптический сигнал. Связь между контрольным и информационным оптическими сигналами в нормальном состоянии отсутствует. Кольцевая защита позволяет также снизить уровень излучения информационного оптического сигнала через боковую поверхность ОВ (посредством мод утечки, возникающих на изгибах волокна различных участков линии связи). Попытки проникнуть к сердцевине обнаруживаются по изменению уровня контрольного (шумового) сигнала или по смешению его с информационным сигналом. Место НД определяется с высокой точностью с помощью рефлектометра.

Разработка технических средств контроля НД к информационному сигналу, передаваемому по ОВ.

Вторая группа работ в этом направлении связана с мониторингом " горячих" волокон и разработкой различных устройств контроля параметров оптических сигналов на выходе ОВ и отраженных оптических сигналов на входе ОВ.

Основой системы фиксации НД является система диагностики состояния (далее – СДС) оптического тракта. СДС можно построить с анализом либо прошедшего через оптический тракт сигнала, либо отраженного сигнала (рефлектометрические СДС).

СДС с анализом прошедшего сигнала является наиболее простой диагностической системой. На приемной части ВОЛС анализируется прошедший сигнал. При НД происходит изменение сигнала, это изменение фиксируется и передается в блок управления ВОЛС.

При использовании анализатора коэффициента ошибок на приемном модуле ВОЛС СДС реализуется при минимальных изменениях аппаратуры ВОЛС, так как практически все необходимые модули имеются в составе аппаратуры ВОЛС. Недостатком является относительно низкая чувствительность к изменениям сигнала.

Основным недостатком СДС с анализом прошедшего сигнала является отсутствие информации о координате появившейся неоднородности, что не позволяет проводить более тонкий анализ изменений режимов работы ВОЛС (для снятия ложных срабатываний системы фиксации НСИ).

СДС с анализом отраженного сигнала (рефлектометрические СДС) позволяют в наибольшей степени повысить надежность ВОЛС.

Для контроля величины мощности сигнала обратного рассеяния в ОВ в настоящее время используется метод импульсного зондирования, применяемый во всех образцах отечественных и зарубежных рефлектометров.

Суть его состоит в том, что в исследуемое ОВ вводится мощный короткий импульс, и затем на этом же конце регистрируется излучение, рассеянное в обратном направлении на различных неоднородностях, по интенсивности которого можно судить о потерях в ОВ, распределенных по его длине на расстоянии до 100 - 120 км. Начальные рефлектограммы контролируемой линии фиксируются при разных динамических параметрах зондирующего сигнала в памяти компьютера и сравниваются с соответствующими текущими рефлектограммами. Локальное отклонение рефлектограммы более чем на 0, 1 дБ свидетельствует о вероятности попытки несанкционированного доступа к ОВ в данной точке тракта.

Основными недостатками СДС с анализом отраженного сигнала на основе метода импульсной рефлектометрии являются следующие:

– при высоком разрешении по длине оптического тракта (что имеет важное значение для обнаружения локальных неоднородностей при фиксации НД) значительно снижается динамический диапазон рефлектометров и уменьшается контролируемый участок ВОЛC;

– мощные зондирующие импульсы затрудняют проведение контроля оптического тракта во время передачи информации, что снижает возможности СДС, либо усложняет и удорожает систему диагностики;

– источники мощных зондирующих импульсов имеют ресурс, недостаточный для длительного непрерывного контроля ВОЛС;

– специализированные источники зондирующего оптического излучения, широкополосная и быстродействующая аппаратура приемного блока рефлектометров значительно удорожает СДС.


12.2.2 Криптографические методы защиты

 


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 738; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь