Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава 3 ЭВОЛЮЦИЯ ПОДХОДОВ К АНАЛИЗУ НАУКИ



 

Эволюция философии науки в ХХ веке в значительной степени связана с переходом от изучения деятельности ученого к изучению науки как целого, как надличностного образования. Это не значит, что ученый и способы его работы нас перестали интересовать. Ни в коем случае. Речь идет только о смещении акцентов. Покажем в самых общих чертах, как это происходило.

Карл Поппер и проблема демаркации

Одна из проблем, существенно определивших развитие философии науки в начале нашего века, получила название проблемы демаркации (этот термин был введен Карлом Поппером). Речь идет об определении границ между наукой и ненаукой. Сам Поппер характеризует свои интересы в этой области следующим образом: " В то время меня интересовал не вопрос о том, " когда теория истинна? ", и не вопрос, " когда теория приемлема? " Я поставил перед собой другую проблему. Я хотел провести различие между наукой и псевдонаукой, прекрасно зная, что наука часто ошибается и что псевдонаука может случайно натолкнуться на истину."

Наиболее распространенный ответ на этот вопрос состоял в том, что наука отличается от псевдонауки или от " метафизики" своей опорой на факты, своим эмпирическим методом. Концепция, которая в это время активно развивалась в рамках так называемого " Венского кружка" и шла от одного из крупнейших философов начала века Л.Витгенштейна, утверждала, что к науке принадлежат только те предложения, которые выводятся из истинных предложений наблюдения или, что то же самое, могут быть верифицированы с помощью этих предложений. Отсюда следовало, что любая теория, претендующая на то, чтобы быть научной, должна быть выводима из опыта.

Поппер с полным основанием не принимает этого тезиса. Наблюдение, с его точки зрения, уже предполагает некоторую теоретическую установку, некоторую исходную гипотезу. Нельзя просто наблюдать, не имея для этого никаких предпосылок. Наблюдение всегда избирательно и целенаправленно: мы исходим из определенной задачи и наблюдаем только то, что нужно для решения этой задачи. Бессмысленность " чистых" наблюдений Поппер иллюстрирует следующим образом. Представьте себе человека, который всю свою жизнь посвятил науке, описывая каждую вещь, попадавшуюся ему на глаза. Все это " бесценное сокровище" наблюдений он завещает Королевскому обществу. Абсурдность ситуации не нуждается в комментариях.

К сказанному можно добавить, что любая развитая теория формулируется не для реальных, а для идеальных объектов. В механике, например, это - материальные точки, абсолютно твердые тела, идеальные жидкости и т.д. Знаменитая теория размещения хозяйственной деятельности человека, построенная Тюненом, исходит из представления об изолированном государстве с одним единственным городом на аблолютно однородной равнине. Изотропную плоскую поверхность предполагает и теория центральных мест Кристаллера. Иными словами, теория строится на базе предпосылок, прямо противоречащих опыту. Как же в таком случае она может вытекать из опыта?

Что же предлагает сам Поппер? Его идея очень проста и красива, хотя, как мы увидим чуть ниже, тоже наталкивается на существенные трудности. Суть идеи сводится к следующему: " Критерием научного статуса теории является ее фальсифицируемость, опровержимость, или проверяемость". Подтвердить фактами можно любую теорию, если мы специально ищем таких подтверждений, но хорошая теория должна прежде всего давать основания для ее опровержения. Любая хорошая теория, считает Поппер, является некоторым запрещением, т.е. запрещает определенные события. Чем больше теория запрещает, тем она лучше, ибо тем больше она рискует быть опровергнутой.

Не трудно видеть, что вся концепция Поппера имеет ярко выраженный нормативный характер. Речь идет о том, как должен работать ученый, чтобы оставаться в рамках науки, каким требованиям должны удовлетворять те теории, которые он строит.

А что такое наука и чем определяются ее границы, кроме критерия самого Поппера, - этот вопрос в данном контексте просто не возникает. " Государство - это Я", - заявил в свое время небезызвестный французский король. " Наука - это Я", - фактически утверждает Поппер и задает границы научности.

Но наука живет своей собственной жизнью, и очень скоро обнаруживается, что критерий Поппера не работает. Это может показаться парадоксальным: мы сами делаем науку, мы, казалось бы, хозяева положения, а критерии научности, нами же установленные, не срабатывают. Может быть, дело в том, что эти критерии не все признают, что они не общеприняты? А если их признать и сделать всеобщим достоянием, тогда что-то изменится? Парадокс в том, что почти ничего. Наука есть нечто большее, чем сумма согласованных человеческих действий.

Но вернемся к критерию К.Поппера. История показывает, что теории живут, развиваются и даже процветают, невзирая на противоречия с экспериментальными данными. Приведем конкретный пример. В 1788 году великий Лагранж писал об уравнениях Эйлера: " Мы обязаны Эйлеру первыми общими формулами для движения жидкостей. записанными в простой и ясной символике частных производных. Благодаря этому открытию вся механика жидкостей свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил.". Надежды Лагранжа не оправдались: в ряде случаев уравнения Эйлера были проинтегрированы, но результаты расчетов резко расходились с наблюдениями. Привело ли это к отказу от уравнений Эйлера? Ни в коем случае.

Вот что пишет по этому поводу известный американский математик и гидродинамик Г.Биркгоф: " В гидродинамике такие несомненные противоречия между экспериментальными данными и заключениями, основанными на правдоподобных рассуждениях, называются парадоксами. Эти парадоксы были предметом многих острот. Так недавно было сказано, что в девятнадцатом веке " гидродинамики разделялись на инженеров-гидравликов, которые наблюдали то, что нельзя было объяснить, и математиков, которые объясняли то, что нельзя было наблюдать". Как мы видим, гидродинамика не только существует, но даже способна шутить. " Теперь обычно заявляют, - продолжает Биркгоф, - что подобные парадоксы возникают из-за отличия реальных жидкостей, имеющих малую, но конечную вязкость, от идеальных жидкостей, имеющих нулевую вязкость." Итак, все дело опять в идеальных объектах, без которых и нельзя, вероятно, построить теорию.

Концепция исследовательских программ И.Лакатоса

Очевидные недостатки фальсификационизма Поппера пытался преодолеть И.Лакатос в своей концепции исследовательских программ. При достаточной находчивости, полагает он, можно на протяжении длительного времени защищать любую теорию, даже если эта теория ложна. " Природа может крикнуть: " Нет! ", но человеческая изобретательность. всегда способна крикнуть еще громче". Поэтому следует отказаться от попперовской модели, в которой за выдвижением некоторой гипотезы следует ее опровержение. Ни один эксперимент не является решающим и достаточным для опровержения теории.

В чем же суть концепции Лакатоса? " Картина научной игры, - пишет он, - которую предлагает методология исследовательских программ, весьма отлична от подобной картины методологического фальсификационизма. Исходным пунктом здесь является не установление фальсифицируемой. гипотезы, а выдвижение исследовательской программы". Под последней понимается теория, способная защищать себя в ситуациях столкновения с противоречащими ей эмпирическими данными. В исследовательской программе Лакатос выделяет ее ядро, т.е. основные принципы или законы, и " защитные пояса", которыми ядро окружает себя в случаях эмпирических затруднений.

Приведем конкретный пример. Допустим, что опираясь на законы Ньютона (в данном случае они образуют ядро исследовательской программы), мы рассчитали орбиты планет Солнечной системы и обнаружили, что это противоречит астрономическим наблюдениям. Неужели мы отбросим законы Ньютона? Разумеется, нет. Мы выдвинем какое-либо дополнительное предположение, для того чтобы объяснить обнаруженные расхождения. Как известно, именно это и имело место в реальной истории: в 1845 году Леверье, занимаясь неправильностями в движении Урана, выдвигает гипотезу о существовании еще одной планеты Солнечной системы, которая и была открыта И.Галле в сентябре 1846 года. Гипотеза Леверье и выступает в данном случае как защитный пояс. Но допустим, что гипотеза не получила бы подтверждения, и новую планету не удалось обнаружить. Неужели мы в этом случае отбросили бы законы Ньютона? Без всякого сомнения, нет. Была бы построена какая-то новая гипотеза.

Как долго это может продолжаться? Лакатос полагает, что теория никогда не фальсифицируется, а только замещается другой, лучшей теорией. Суть в том, что исследовательская программа может быть либо прогрессирующей, либо регрессирующей. Она прогрессирует, если ее теоретический рост предвосхищает рост эмпирический, т.е. если она с успехом предсказывает новые факты. Она регрессирует, если новые факты появляются неожиданно, а программа только дает им запоздалые объяснения. В этом случае теоретический рост отстает от эмпирического роста. Если одна исследовательская программа прогрессивно объясняет больше, чем другая, с ней конкурирующая, то первая вытесняет вторую.

Лакатос признает, что в конкретной ситуации " очень трудно решить. в какой именно момент определенная исследовательская программа безнадежно регрессировала или одна из двух конкурирующих программ получила решающее преимущество перед другой". Это в значительной степени лишает его концепцию нормативного характера. Лакатос, однако, все же пытается сформулировать некоторый набор правил в форме " кодекса научной честности". Главную роль там играют скромность и сдержанность. " Всегда следует помнить о том, что, даже если ваш оппонент сильно отстал, он еще может догнать вас. Никакие преимущества одной из сторон нельзя рассматривать как абсолютно решающие. Не существует никакой гарантии триумфа той или иной программы. Не существует также и никакой гарантии ее крушения".

Если это и предписания, то довольно странные. По сути, они звучат так: сохраняй сдержанность, ибо на все воля Божья. Иными словами, в концепции Лакатоса из-за деятельности ученого уже явно выступает некий глобальный надличностный процесс. Он еще не исследуется, его природа не выявлена, но он присутствует, ибо, если мы сами не способны осуществить рациональный выбор, то как же этот " выбор" все же осуществляется в истории науки?

Нормальная наука Т.Куна

Крутой поворот в подходе к изучению науки совершил американский историк физики Томас Кун в своей работе " Структура научных революций", которая появилась в 1962 году. Наука или, точнее, нормальная наука, согласно Куну, - это сообщество ученых, объединенных достаточно жесткой программой, которую Кун называет парадигмой и которая целиком определяет, с его точки зрения, деятельность каждого ученого. Именно парадигма как некое надличностное образование оказывается у Куна в центре внимания. Именно со сменой парадигм связывает он коренные изменения в развитии науки - научные революции. Но рассмотрим его концепцию более подробно.

Нормальная наука, - пишет Кун, - это " исследование, прочно опирающееся на одно или несколько прошлых достижений - достижений, которые в течение некоторого времени признаются определенным научным сообществом как основа для развития его дальнейшей практической деятельности". Уже из самого определения следует, что речь идет о традиции, т.е. наука понимается как традиция.

Прошлые достижения, лежащие в основе этой традиции, и выступают в качестве парадигмы. Чаще всего под этим понимается некоторая достаточно общепринятая теоретическая концепция типа системы Коперника, механики Ньютона, кислородной теории Лавуазье и т.п. Со сменой концепций такого рода Кун прежде всего и связывает научные революции. Конкретизируя свое представление о парадигме, он вводит понятие о дисциплинарной матрице, в состав которой включает следующие четыре элемента:

1. Символические обобщения типа второго закона Ньютона, закона Ома, закона Джоуля-Ленца и т.д.

2. Концептуальные модели, примерами которых могут служить общие утверждения такого типа: " Теплота представляет собой кинетическую энергию частей, составляюших тело" или " Все воспринимаемые нами явления существуют благодаря взаимодействию в пустоте качественно однородных атомов".

3. Ценностные установки, принятые в научном сообществе и проявляющие себя при выборе направлений исследования, при оценке полученных результатов и состояния науки в целом.

4. Образцы решений конкретных задач и проблем, с которыми неизбежно сталкивается уже студент в процессе обучения. Этому элементу дисциплинарной матрицы Кун придает особое значение, и в следующем параграфе мы остановимся на этом более подробно.

В чем же состоит деятельность ученого в рамках нормальной науки? Кун пишет: " При ближайшем рассмотрении этой деятельности в историческом контексте или в современной лаборатории создается впечатление, будто бы природу пытаются втиснуть в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку часто, в сущности, вообще упускаются из виду. Ученые в русле нормальной науки не ставят себе цели создания новых теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими".

Итак, в рамках нормальной науки ученый настолько жестко запрограммирован, что не только не стремится открыть или создать что-либо принципиально новое, но даже не склонен это новое признавать или замечать. Что же он делает в таком случае? Концепция Куна выглядела бы пустой фантазией, если бы ему не удалось убедительно показать, что нормальная наука способна успешно развиваться. Кун, однако, это показал, показал, что традиция является не тормозом, а, напротив, необходимым условием быстрого накопления знаний.

И действительно, сила традиции как раз в том и состоит, что мы постоянно воспроизводим одни и те же действия, один и тот же способ поведения все снова и снова при разных, вообще говоря, обстоятельствах. Поэтому и признание той или иной теоретической концепции означает постоянные попытки осмыслить с ее точки зрения все новые и новые явления, реализуя при этом стандартные способы анализа или объяснения. Это организует научное сообщество, создавая условия для взаимопонимания и сопоставимости результатов, и порождает ту " индустрию" производства знаний, которую мы и наблюдаем в современной науке.

Но речь вовсе не идет при этом о создании чего-то принципиально нового. По образному выражению Куна, ученые, работающие в нормальной науке, постоянно заняты " наведением порядка", т. е. проверкой и уточнением известных фактов, а также сбором новых фактов, в принципе предсказанных или выделенных теорией. Химик, например, может быть занят определением состава все новых и новых веществ, но само понятие химического состава и способы его определения уже заданы парадигмой. Кроме того, в рамках парадигмы никто уже не сомневается, что любое вещество может быть охарактеризовано с этой точки зрения.

Таким образом, нормальная наука очень быстро развивается, накапливая огромную информацию и опыт решения задач. И развивается она при этом не вопреки традициям, а именно в силу своей традиционности. Пониманием этого факта мы и обязаны Томасу Куну. Его с полным правом можно считать основателем учения о научных традициях. Конечно, на традиционность в работе ученого и раньше обращали внимание, но Кун впервые сделал традиции центральным объектом рассмотрения при анализе науки, придав им значение основного конституирующего фактора в научном развитии.

Но как же в таком случае происходит изменение и развитие самих традиций, как возникают новые парадигмы? " Нормальная наука, - пишет Кун, - не ставит своей целью нахождение нового факта или теории, и успех в нормальном научном исследовании состоит вовсе не в этом. Тем не менее новые явления, о существовании которых никто не подозревал, вновь и вновь открываются научными исследованиями, а радикально новые теории опять и опять изобретаются учеными. История даже наводит на мысль, что научное предприятие создало исключительно мощную технику для того, чтобы преподносить сюрпризы подобного рода". Как же конкретно появляютя новые фундаментальные факты и теории? " Они, - отвечает Кун, - создаются непреднамеренно в ходе игры по одному набору правил, но их восприятие требует разработки другого набора правил". Иными словами, ученый и не стремится к получению принципиально новых результатов, однако, действуя по заданным правилам, он непреднамеренно, т.е. случайным и побочным образом, наталкивается на такие факты и явления, которые требуют изменения самих этих правил.

Подведем некоторые итоги. Не трудно видеть, что концепция Куна знаменует уже совсем иное видение науки по сравнению с нормативным подходом Венского кружка или К.Поппера. В центре внимания последних - ученый, принимающий решения и выступающий как определяющая и движущая сила в развитии науки. Наука здесь фактически рассматривается как продукт человеческой деятельности. Поэтому крайне важно ответить на вопрос: какими критериями должен руководствоваться ученый, к чему он должен стремиться? В модели Куна происходит полная смена ролей: здесь уже наука в лице парадигмы диктует ученому свою волю, выступая как некая безликая сила, а ученый - это всего лишь выразитель требований своего времени. Кун вскрывает и природу науки как надличностного явления: речь идет о традиции.

Можно ли что-либо возразить против этой достаточно простой и принципиальной модели? Два пункта вызывают сомнение. Первый был, вероятно, камнем преткновения и для самого Куна. Как согласовать изменение парадигмы под напором новых фактов с утверждением, что ученый не склонен воспринимать явления, которые в парадигму не укладываются, что эти явления " часто, в сущности, вообще упускаются из виду"? С одной стороны, Кун приводит немало фактов, показывающих, что традиция препятствует ассимиляции нового, с другой, он вынужден такую ассимиляцию признать. Это выглядит как противоречие.

Сомнительность второго пункта менее очевидна. Кун резко противопоставляет работу в рамках нормальной науки, с одной стороны, и изменение парадигмы, с другой. В одном случае, ученый работает в некоторой традиции, в другом, - выходит за ее пределы. Конечно, эти два момента противостоят друг другу, но, вероятно, не только в масштабах науки как целого, но и применительно к любым традициям более частного характера. Кун же в основном говорит именно о науке, и это чрезмерно глобализирует наше представление о традиции. Фактически получается, что наука - это чуть ли не одна традиция, а это сильно затрудняет анализ того, что происходит в науке. Попытаемся поэтому несколько обогатить наше представление о научных традициях. Это совершенно необходимо на пути критической оценки и усовершенствования концепции Куна, на пути развития тех, несомненно, важных предпосылок, которые содержатся в его модели науки.

Концепция неявного знания М.Полани и многообразие научных традиций

Нетрудно показать, что в научном познании мы имеем дело не с одной или несколькими, а со сложным многообразием традиций, которые отличаются друг от друга и по содержанию, и по функциям в составе науки, и по способу своего существования. Начнем с последнего.

Достаточно всмотреться более внимательно в дисциплинарную матрицу Куна, чтобы заметить некоторую неоднородность. С одной стороны, он перечисляет такие ее компоненты, как символические обобщения и концептуальные модели, а с другой, - ценности и образцы решений конкретных задач. Но первые существуют в виде текстов и образуют содержание учебников и монографий, в то время как никто еще не написал учебного курса с изложением системы научных ценностей. Ценностные ориентации мы получаем не из учебников, мы усваиваем их примерно так же, как родной язык, т.е. по непосредственным образцам. У каждого ученого, например, есть какие-то представления о том, что такое красивая теория или красивое решение задачи, изящно поставленный эксперимент или тонкое рассуждение, но об этом трудно говорить, это столь же трудно выразить на словах, как и наши представления о красоте природы.

Известный химик и философ М.Полани убедительно показал в конце 50-х годов нашего века, что предпосылки, на которые ученый опирается в своей работе, невозможно полностью вербализовать, т.е. выразить в языке. " То большое количество учебного времени, - писал он, - которое студенты-химики, биологи и медики посвящают практическим занятиям, свидетельствует о важной роли, которую в этих дисциплинах играет передача практических знаний и умений от учителя к ученику. Из сказанного можно сделать вывод, что в самом сердце науки существуют области практического знания, которые через формулировки передать невозможно". Знания такого типа Полани назвал неявными знаниями. Ценностные ориентации можно смело причислить к их числу.

Итак, традиции могут быть как вербализованными, существующими в виде текстов, так и невербализованными, существующими в форме неявного знания. Последние передаются от учителя к ученику или от поколения к поколению на уровне непосредственной демонстрации образцов деятельности или, как иногда говорят, на уровне социальных эстафет. Об этих последних мы еще поговорим более подробно. А сейчас важно то, что признание неявного знания очень сильно усложняет и обогащает нашу картину традиционности науки. Учитывать надо не только ценности, как это делает Кун, но и многое, многое другое. Что бы ни делал ученый, ставя эксперимент или излагая его результаты, читая лекции или участвуя в научной дискуссии, он, часто сам того не желая, демонстрирует образцы, которые, как невидимый вирус, " заражают" окружающих.

Вводя в рассмотрение неявное знание и соответствующие неявные традиции, мы попадаем в сложный и мало исследованный мир, в мир, где живет наш язык и научная терминология, где передаются от поколения к поколению логические формы мышления и его базовые категориальные структуры, где удерживаются своими корнями так называемый здравый смысл и научная интуиция. Очевидно, что родной язык мы усваиваем не по словарям и не по грамматикам. В такой же степени можно быть вполне логичным в своих рассуждениях, никогда не открывая учебник логики. А где мы заимствуем наши категориальные представления? Ведь уже ребенок постоянно задает свой знаменитый вопрос " почему? ", хотя никто не читал ему специального курса лекций о причинности. Все это - мир неявного знания. Историки и культурологи часто используют термин " менталитет" для обозначения тех слоев духовной культуры, которые не выражены в виде явных знаний и тем не менее существенно определяют лицо той или иной эпохи или народа. Но и любая наука имеет свой менталитет, отличающий ее от других областей научного знания и от других сфер культуры, но тесно связанный с менталитетом эпохи.

Противопоставление явных и неявных знаний дает возможность более точно провести и осознать давно зафиксированное в речи различие научных школ, с одной стороны, и научных направлений, с другой. Развитие научного направления может быть связано с именем того или другого крупного ученого, но оно вовсе не обязательно предполагает постоянные личные контакты людей, работающих в рамках этого направления. Другое дело - научная школа. Здесь эти контакты абсолютно необходимы, ибо огромную роль играет опыт, непосредственно передаваемый на уровне образцов от учителя к ученику, от одного члена сообщества к другому. Именно поэтому научные школы имеют, как правило, определенное географическое положение: Казанская школа химиков, Московская математическая школа и т.п.

А как быть с образцами решений конкретных задач, которым Т.Кун придает очень большое значение? С одной стороны, они существуют и транслируются в виде текста, и поэтому могут быть идентифицированы с эксплицитным, т.е. явным знанием. Но, с другой, - перед нами будут именно образцы, а не словесные предписания или правила, если нам важна та информация, которая непосредственно в тексте не выражена. Допустим, например, что в тексте дано доказательство теоремы Пифагора, но нас интересует не эта именно теорема, а то, как вообще следует строить математическое доказательство. Эта последняя информация представлена здесь только в форме примера, т.е. неявным образом. Конечно, ознакомившись с доказательством нескольких теорем, мы приобретем и некоторый опыт, некоторые навыки математического рассуждения вообще, но это опять-таки будет трудно выразить на словах в форме достаточно четкого предписания.

В свете сказанного можно выделить два типа неявного знания и неявных традиций. Первые связаны с воспроизведением непосредственных образцов деятельности, вторые предполагают текст в качестве посредника. Первые невозможны без личных контактов, для вторых такие контакты необязательны. Все это достаточно очевидно. Гораздо сложнее противопоставить друг другу неявное знание второго типа и знание эксплицитное. Действительно, прочитав или услышав от преподавателя доказательство теоремы Пифагора, мы можем либо повторить это доказательство, либо попробовать перенести полученный опыт на доказательство другой теоремы. Но, строго говоря, в обоих случаях речь идет о воспроизведении образца, хотя едва ли нужно доказывать, что второй путь гораздо сложнее первого. Разницу можно продемонстрировать на примере изучения иностранного языка. Одно дело, например, заучить и повторить какую-либо фразу, другое - построить аналогичную фразу, используя другие слова. В обоих случаях исходная фраза играет роль образца, но при переходе от первого ко второму происходит существенное расширение возможностей выбора. В то время как простое повторение исходной фразы ограничивает эти возможности особенностями произношения, создание нового предложения предполагает выбор подходящих слов из всего арсенала языка. В дальнейшем мы еще вернемся к этому различению.

Итак, введенное М.Полани представление о неявных знаниях позволяет значительно обогатить и дифференцировать общую картину традиционности науки. Сделаем еще один шаг в этом направлении. Не трудно заметить, что в основе неявных традиций могут лежать как образцы действий, так и образцы продуктов. Это существенно: одно дело, если вам продемонстрировали технологию производства предмета, например, глиняной посуды, другое - показали готовый кувшин и предложили сделать такой же. Во втором случае вам предстоит нелегкая и далеко не всегда осуществимая работа по реконструкции необходимых производственных операций. В познании, однако, мы постоянно сталкиваемся с проблемами такого рода.

Рассмотрим несколько примеров. Мы привыкли говорить о таких методах познания, как абстракция, классификация, аксиоматический метод. Но, строго говоря, слово " метод" здесь следовало бы взять в кавычки. Можно продемонстрировать на уровне последовательности операций какой-нибудь метод химического анализа или метод решения системы линейных уравнений, но никому пока не удавалось проделать это применительно к классификации или к процессу построения аксиоматической теории. В формировании аксиоматического метода огромную роль сыграли " Начала" Евклида, но это был не образец операций, а образец продукта. Аналогично обстоит дело и с классификацией. Наука знает немало примеров удачных классификаций, масса ученых пытается построить нечто аналогичное в своей области, но никто не владеет рецептом построения удачной классификации.

Нечто подобное можно сказать и о таких методах, как абстракция, обобщение, формализация и т.д. Мы можем легко продемонстрировать соответствующие образцы продуктов, т.е. общие и абстрактные высказывания или понятия, достаточно формализованные теории, но никак не процедуры, не способы действия. Кстати, таковые вовсе не обязательно должны существовать, ибо процессы исторического развития далеко не всегда выразимы в терминах целенаправленных человеческих действий. Мы все владеем своим родным языком, он существует, но это не значит, что можно предложить или реконструировать технологию его создания.

Мы не хотим всем этим сказать, что перечисленные методы и вообще образцы продуктов познания есть нечто иллюзорное, мы отнюдь не собираемся преуменьшать их значение. Они лежат в основе целеполагания, формируют те идеалы, к реализации которых стремится ученый, организуют поиск, определяют форму систематизации накопленного материала. Однако их не следует смешивать с традициями, задающими процедурный арсенал научного познания.

Из всего изложенного напрашивается еще один вывод: каждая традиция имеет свою сферу распространения, и есть традиции специальнонаучные, не выходящие за пределы той или иной области знания, а есть общенаучные или, если выражаться более осторожно, междисциплинарные. Вообще говоря, это достаточно очевидно и на уровне явных знаний: методы физики или химии широко применяются не только в естественных, но и в общественных науках, выступая тем самым как междисциплинарные методы. Однако изложенное выше позволяет значительно расширить наши представления и в этой области. Аксиоматические построения в геометрии стали в свое время образцом для аналогичных построений в других областях знания. Современные физические теории стали идеалом для других дисциплин, стремящихся к теоретизации и математизации. Возникает мысль, что одна и та же концепция может выступать и в роли куновской парадигмы, и в функции образца для других научных дисциплин. Речь идет об образцах продукта. Так, например, экология, возникшая в прошлом веке в качестве раздела биологии, вызвала после этого к жизни уже немало своих двойников типа экологии преступности, этнической экологии и т.п. Нужно ли говорить, что все эти дисциплины не имеют никакого прямого отношения не только к биологии, но и к естествознанию вообще.

В этом пункте концепция Т. Куна начинает испытывать серьезные трудности. Наука в свете его модели выглядит как обособленный организм, живущий в своей парадигме точно в скафандре с автономной системой жизнеобеспечения. И вот оказывается, что никакого скафандра нет и ученый подвержен всем воздействиям окружающей среды. Возникает даже вопрос, который никак не мог возникнуть у Куна: а в каких традициях ученый работает прежде всего - в специальнонаучных или междисциплинарных? И почему биолог, на каждом шагу использующий методы физики или химии и нередко мечтающий о теоретизации и математизации своей области по физическому образцу, почему он все же биолог, а не кто-либо другой? Чем обусловлен такой его Я-образ? Этот вопрос о границах наук вовсе не так прост, как это может показаться на первый взгляд. Найти ответ - это значит выделить особый класс предметообразующих традиций, с которыми наука и связывает свою специфику, свое особое положение в системе знания, свой Я-образ.

Трудности и проблемы

Подведем теперь общий итог и попытаемся сформулировать те основные проблемы, которые нам предстоит решить. Концепция Т.Куна - это первая попытка построить модель науки как надличностного явления. Куна интересует не ученый и методы его работы, а та программа, которая навязывает ученому свою волю, диктуя ему, в частности, и задачи, которые он ставит, и методы, которые он использует. Ученый в рамках этой модели начинает напоминать шахматную фигуру, которая перемещается по определенным правилам, включая и элементарные правила ходов, и принципы шахматной тактики и стратегии.

Что нас не устраивает в этой модели? Придирок может быть много. 1. Кун не вскрыл механизма научных революций, механизма формирования новых программ, не проанализировал соотношение таких явлений, как традиции и новации. Он и не мог этого сделать, ибо его концепция слишком синкретична для решения подобного рода задач. 2. Программы, в которых работает ученый, Кун понимает слишком суммарно и недифференцированно, что создает иллюзию большой обособленности различных научных дисциплин. Однако осознание всего многообразия этих программ приводит, как мы видели, к противоположной трудности, к утрате четких дисциплинарных границ. 3. Ученый у Куна жестко запрограммирован, и Кун всячески подчеркивает его парадигмальность. Однако, если программ достаточно много, то ученый приобретает свободу выбора, что, вероятно, должно существенно изменить картину. 4. Модель Куна неспецифична и не решает проблему демаркации, ибо очевидно, что парадигмальность присуща не только науке, но и другим сферам культуры и человеческой деятельности вообще. Но решение этой проблемы нужно, вероятно, искать уже не на пути формулировки нормативных требований, предъявляемых к деятельности или ее продуктам, а на пути анализа науки как целого, как надличностного образования.

Преодоление всех указанных трудностей предполагает построение более богатой модели науки. Но главное, что следует сделать прежде всего - это показать, модель чего именно мы строим, что собой представляет наука как объект нашего исследования. Можно, например, описывать и систематизировать разнообразные оптические явления, но построение общей теории нуждается в ответе на вопрос, что собой представляет свет, к явлениям какого рода он относится. Один из таких ответов состоял в свое время в том, что свет - это волна. Нам необходимо ответить на аналогичный вопрос: к явлениям какого рода принадлежит наука?

 

 


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 388; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь