Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теория струн и свойства частиц
Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Например, почему электрон обладает именно такой массой, а u -кварк имеет именно такой электрический заряд? Интерес к этим вопросам не просто академический, он отражает очень важный факт, что упоминался ранее. Если бы у частиц были другие свойства — например, будь электрон чуть тяжелее или легче, или электростатическое отталкивание между электронами сильнее или слабее, — ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой.43 Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле. Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными. Если нам удастся ответить на этот вопрос, это станет одним из самых важных шагов на пути к пониманию того, почему Вселенная такая как она есть. В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория, — поэтому теория успешно работает с широким спектром значений масс и зарядов.44 Если вообразить мир, где масса электрона или его заряд будут меньше или больше, чем в нашем, то квантовая теория поля опишет явления в таком мире, не моргнув глазом; для этого всего лишь надо будет подстроить значения параметров в уравнениях теории. Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории (то, что более всего меня поразило, когда я приступил к её изучению) состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Подобно тому как поток воздуха, проходящий сквозь духовой инструмент, приобретает колебательное движение, характер которого определяется геометрической формой инструмента, колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений. Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби–Яу (на математическом жаргоне многообразия Калаби–Яу ), названных в честь математиков Эудженио Калаби и Шин-Туна Яу, которые изучали их свойства задолго до осознания важности их роли в теории струн (рис. 4.6). Проблема в том, что нет какой-то одной, выделенной формы Калаби–Яу. Наоборот, подобно музыкальным инструментам, эти пространства имеют разные размеры и контуры. И так же как разные музыкальные инструменты издают разные звуки — дополнительные измерения, различающиеся по размерам и по форме (а также по другим параметрам, с которыми мы встретимся в следующей главе), порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.
Рис. 4.6. Крупный план пространственной структуры в теории струн, где показан пример дополнительных измерений, закрученных в одно из пространств Калаби–Яу. Подобно набивке на основе ковра, пространство Калаби–Яу прикреплено в каждой точке трёх привычных больших измерений (представленных двумерной решёткой), однако для простоты восприятия эти пространства размещены только в узлах решётки
Когда я начал заниматься теорией струн в середине 1980-х годов, было известно небольшое количество пространств Калаби–Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Моя диссертация стала одним из самых первых шагов в этом направлении. Спустя несколько лет, когда я стал постдоком (под руководством того самого Яу из Калаби–Яу), число пространств Калаби–Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения — но ведь для этого и существуют студенты! Время шло и число страниц в каталоге пространств Калаби–Яу только увеличивалось; как будет видно в главе 5, теперь их больше чем песчинок на пляже. На всех пляжах вместе взятых. Даже представить невозможно. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби–Яу то самое, единственное. Пока это никому не удалось. Поэтому теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.45 Однако, следует помнить, что слава теории струн в первую очередь основана на том, что она может решить центральную дилемму теоретической физики XX столетия — непримиримость общей теории относительности и квантовой механики. В рамках теории струн общая теория относительности и квантовая механика наконец-то гармонично соединяются. Именно в этом состоит самое важное преимущество теории струн, позволяющее обойти основную преграду, препятствующую применению стандартных методов квантовой теории поля. Если бы мы обладали лучшим пониманием математического аппарата теории струн и могли бы однозначно выбрать форму дополнительных измерений, ту, которая приведёт к объяснению наблюдаемых свойств частиц, это был бы феноменальный триумф. Однако нет никакой гарантии, что теория струн сможет с этим справиться. Более того, нет никакой необходимости требовать этого от неё. Квантовая теория поля заслуженно считается в высшей степени успешной теорией, хотя она не может объяснить фундаментальные свойства частиц. Если теория струн тоже не сможет это объяснить, но при этом ключевым образом продвинется намного дальше квантовой теории поля, включив в себя гравитацию, то только это уже будет монументальным достижением. Действительно, в главе 6 мы увидим, что в космосе, заполненном параллельными мирами — как следует из некоторых современных версий теории струн, — было бы совершенно неправильно думать, будто математический анализ выявит единственную форму дополнительных измерений. Наоборот, подобно тому как множество различных форм ДНК приводят к разнообразию жизни на Земле, огромное разнообразие форм дополнительных измерений может приводить к множеству вселенных, населяющих струнную мультивселенную.
Теория струн и эксперимент
Если типичная струна имеет крохотный размер, как на рис. 4.2, то для обнаружения её протяжённой структуры — той самой характеристики, которая отличает её от частицы — потребуется ускоритель в миллионы миллиардов раз мощнее, чем Большой адронный коллайдер. При современных технологиях такой ускоритель будет примерно с галактику и будет потреблять каждую секунду столько энергии, сколько потратит весь мир за тысячелетие. Предполагая, что выдающийся технологический прорыв не предвидится, такая ситуация означает, что на сравнительно малых энергиях, достижимых на имеющихся ускорителях, струны неотличимы от точечных частиц. Такова экспериментальная версия упомянутого ранее теоретического факта: на низких энергиях теория струн сводится к квантовой теории поля. Таким образом, даже если теория струн и является правильной фундаментальной теорией, в широком диапазоне доступных экспериментов она будет проявляться как квантовая теория поля. Это уже хорошо. Хотя квантовая теория поля не может объединить общую теорию относительности и квантовую механику, не может предсказать фундаментальные свойства частиц в природе, но она умеет объяснять великое множество экспериментальных данных. Измеренные на эксперименте свойства частиц берутся в качестве исходных данных (это определяет состав полей и кривые энергии), после чего с помощью математического аппарата теории предсказывается поведение этих частиц в других экспериментах, в основном на ускорителях. Получаемые результаты в высшей степени достоверны; именно по этой причине поколения учёных, занимающихся физикой частиц, используют квантовую теорию поля в качестве основного метода. Выбор полей и кривых энергий в квантовой теории поля равносилен выбору формы дополнительных измерений в теории струн. Одна из проблем в теории струн состоит в том, что математика, которая связывает свойства частиц (таких как массы и заряды) с формой дополнительных измерений, в высшей степени нетривиальна. Поэтому работа в обратном направлении очень трудна — использование экспериментальных данных для определения конкретной формы дополнительных измерений, аналогично тому как такие данные определяют состав полей и кривых энергий в квантовой теории поля. Возможно, что однажды удача улыбнётся теоретикам и они смогут из экспериментальных данных определить форму дополнительных измерений в теории струн, но пока этого не произошло. Поэтому в обозримом будущем наиболее обещающим способом связи теории струн с экспериментальными данными будут предсказания, которые, конечно, можно объяснить с помощью более традиционных методов, но для которых гораздо более естественное и убедительное объяснение возникает из теории струн. Конечно, можно теоретизировать насчёт того, что я печатаю этот текст пальцами ног, но гораздо более естественная и убедительная гипотеза — и я оцениваю её как правильную, — что я всё-таки печатаю пальцами рук. Аналогичные рассуждения применительно к экспериментам, собранным в табл. 4.1, вполне могут служить косвенными подтверждениями правильности теории струн.
Таблица 4.1. Эксперименты и наблюдения, способные установить связь между экспериментальными данными и теорией струн
Эксперимент/наблюденияОбъяснениеСуперсимметрияВ теории суперструн приставка «супер» отсылает к суперсимметрии — математической конструкции с чёткими следствиями: у каждой известной частицы должен иметься партнёр с такими же электрическими и сильными ядерными свойствами. Теоретики полагают, что эти частицы до сих пор не были обнаружены, потому что они тяжелее, чем их известные партнёры, и находятся вне досягаемости современных ускорителей. Энергии Большого адронного коллайдера может хватить для их рождения, поэтому многие считают, что мы, возможно, находимся на пороге открытия суперсимметричного характера природы.Дополнительные измерения и гравитацияПоскольку пространство является средой для гравитации, увеличение числа измерений расширяет область действия гравитации. Подобно постепенному растворению капли чернил в стакане с водой, сила гравитации размывается при распространении сквозь дополнительные измерения — что, возможно, объясняет слабость гравитационного взаимодействия (когда вы поднимаете чашку с кофе, сила ваших мышц преодолевает гравитационное притяжение всей Земли). Если нам удастся измерить силу гравитации на расстояниях, меньших чем размер дополнительных измерений, это позволит ухватить её прежде, чем она растворится во всём пространстве, и, следовательно, есть шанс обнаружить более сильное притяжение. На сегодняшний день, измерения на расстояниях примерно в один микрон (10− 6 метра) не обнаружили никаких отклонений от предсказаний, сделанных для мира с тремя пространственными измерениями. Наличие отклонений при уменьшении расстояния даст убедительное доказательство существования дополнительных измерений.Дополнительные измерения и потеря энергииЕсли дополнительные измерения существуют, но их размер меньше микрона, то они недоступны для экспериментов, напрямую измеряющих силу гравитации. Однако Большой адронный коллайдер предлагает другие способы их обнаружения. Осколки, возникающие при лобовых столкновениях быстрых протонов, могут выпасть из привычных трёх больших измерений и оказаться в других измерениях (где по причинам, которые мы рассмотрим позже, эти осколки, возможно, станут частицами гравитации, или гравитонами ). В таком процессе осколки уносят с собой энергию, в результате чего наши детекторы после столкновения должны зафиксировать потерю энергии. Такая потеря энергии может убедительно свидетельствовать в пользу существования дополнительных измерений.Дополнительные измерения и чёрные мини-дырыОбычно считается, что чёрные дыры — это остатки массивных звёзд, истративших своё ядерное топливо и схлопнувшихся под собственным весом, однако это слишком упрощённый подход. При достаточном сжатии стать чёрной дырой может всё, что угодно. Более того, если есть дополнительные измерения, то гравитация усиливается при действии на малых расстояниях, поэтому создать чёрную дыру будет легче, так как сильное гравитационное поле приводит к тому, что для создания того же самого гравитационного притяжения необходимо меньшее давление. Даже если столкнуть всего два протона на скоростях, достижимых на Большом адронном коллайдере, то можно накачать достаточно малый объём пространства таким количеством энергии, что запустится механизм образования чёрных дыр. Возникнет лишь слабое подобие чёрной дыры, но оно будет безошибочно узнаваемо. Математический анализ, основанный на работах Стивена Хокинга, показывает, что крошечные чёрные дыры быстро распадаются на более лёгкие частицы, следы которых могут быть обнаружены детекторами коллайдера.Гравитационные волныХотя размер струны очень мал, но если найдётся способ как-то её ухватить, её можно растянуть до больших размеров. Для этого потребуется приложить силу более чем 1020 тонн, но растяжение струны — это всего лишь вопрос приложения достаточной энергии. Теоретики обнаружили экзотические ситуации, когда энергия подобного растяжения рождается в астрофизических процессах, порождающих длинные струны, растянутые в пространстве. Их можно обнаружить, даже несмотря на очень большую отдалённость. Вычисления показывают, что при колебании длинной струны в пространстве-времени порождаются гравитационные волны — весьма специального характера, поэтому они могут дать ясный наблюдательный знак. В течение следующих нескольких десятилетий, если не раньше, высокочувствительные детекторы, расположенные на Земле и, при условии достаточного финансирования, на орбите, могут обнаружить эти волны.Реликтовое излучениеРеликтовое излучение уже продемонстрировало свои возможности в тестировании квантовой физики: экспериментально зафиксированные температурные колебания реликтового излучения возникают из квантовых флуктуаций, растянутых при пространственном расширении. (Вспомните пример со словами, написанными крохотными буквами на поверхности воздушного шарика, которые проявляются по мере надувания шарика.) Расширение пространства при инфляции так велико, что даже небольшие следы, оставленные струнами, могут растянуться настолько, чтобы их можно было обнаружить — возможно, это сделает спутник «Планк» Европейского космического агентства. Успех или неудача зависит от деталей поведения струн в ранней Вселенной — что за сообщение было оставлено струнами на поверхности раздувающегося вселенского шарика. Есть много разных идей и вычислений. Теоретики ждут, что скажут наблюдательные данные.Возможные эксперименты ранжируются от экспериментов по физике частиц на Большом адронном коллайдере (поиск суперсимметричных частиц и указаний на дополнительные измерения) до настольных экспериментов (измерение силы гравитационного притяжения на расстояниях одной миллионной доли метра и даже меньше) и астрономических наблюдений (поиск определённых типов гравитационных волн и малых температурных колебаний реликтового излучения). В табл. 4.1 объясняются разные подходы, но общая оценка легко прослеживается. Положительный исход любого из этих экспериментов может быть объяснён без привлечения теории струн. Например, хотя математическое описание суперсимметрии (см. первую строчку в табл. 4.1) изначально было открыто в теоретических исследованиях по теории струн, с тех пор оно также используется в неструнных теоретических моделях. Таким образом, открытие суперсимметричных частиц станет подтверждением теории струн, но не бесспорным доказательством. Аналогично, хотя дополнительные пространственные измерения естественным образом возникают в теории струн, они также возникают и в неструнных моделях (мы помним, что Калуца, предлагая свою идею, совсем не думал о теории струн). Поэтому самой благоприятной следует рассматривать такую ситуацию, где будет получен ряд положительных результатов из тех, что приведены в табл. 4.1, которые подтвердят правильность теории в разных её проявлениях. И как в примере с печатью текста пальцами ног, неструнные объяснения окажутся надуманными перед лицом целого набора положительных результатов. Отрицательные результаты экспериментов гораздо менее полезны. Провал в поисках суперсимметричных частиц может означать, что они не существуют или что они слишком тяжёлые, чтобы быть обнаруженными даже на Большом адронном коллайдере; провал в поисках свидетельств существования дополнительных измерений может означать, что они не существуют или что они слишком малы, чтобы быть доступными нашим технологиям; провал в поисках микроскопических чёрных дыр может означать, что гравитация не становится сильнее на малых расстояниях, или что наши ускорители недостаточно мощные для более глубокого проникновения в микромир; провал в поисках струнных проявлений в наблюдениях гравитационных волн или реликтового излучения может означать неправильность теории струн, или что эти проявления слишком малы, чтобы быть измеренным на современном оборудовании. На сегодняшний день наиболее вероятно, что даже самые многообещающие положительные результаты экспериментов не смогут определённо подтвердить правоту теории струн, а отрицательные результаты, скорее всего, не смогут её опровергнуть.46 При этом надо не ошибиться. Если мы обнаружим доказательства существования дополнительных измерений, суперсимметрии, чёрных мини-дыр или любого из других возможных проявлений теории струн, это станет важной вехой в поиске единой теории. Это придаст нам уверенность, что избранная нами математическая дорога ведёт в правильном направлении.
|
Последнее изменение этой страницы: 2017-04-13; Просмотров: 387; Нарушение авторского права страницы