Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды динамических нагрузок и задачи динамики сооружений.



Виды динамических нагрузок и задачи динамики сооружений.

Виды динамических нагрузок:

1) Периодическая нагрузка – это нагрузка, которая воздействует на сооружение через определенный период (причиной выступают различные механизмы: электродвигатели, металлообрабатывающие станки, вентиляторы и др.).

Если их вращающиеся части не уравновешены, то они вызывают гармоническую нагрузку.

Такие механизмы как поршневые компрессоры и насосы, штамповочные машины, дробилки приводят к возникновению негармонической нагрузки.

2) Импульсные нагрузки (взрыв, падающий груз или частяи силовых установок (молотов, копров и др.).

3) Подвижные нагрузки (поезда, автомобили и др.).

4) Недетерминированные (случайные) нагрузки ( ветер, сейсмические и взрывные нагрузки).

Задача динамики сооружений — создание надежных методов динамич. расчета сооружений, обеспечивающих определение перемещений и усилий в элементах сооружения.

Виды тектонических землетрясений и основные характеристики.

Тектонические землетрясения представляют собой подземные толчки или колебания земной поверхности, вызванные происходящими в толще земной коры разломами и перемещениями литосферных плит. При землетрясении образуется энергия огромной силы, распространяющаяся в виде упругих сейсмических волн. Основные параметры, характеризующие силу и характер землетрясения, - магнитуда, глубина очага и интенсивность энергии на земной поверхности. Тектоничесие землетрясения приурочены к определенным областям (сейсмическим), обычно совпадающим с зонами альпийской складчатости, где проявляются интенсивные тектонические движения с образованием разрывов в земной коре. Иногда случаются землетрясения во внутренних частя плит – так называемые внутриплитовые землетрясения. Исходя из вышесказанного тектонические землетрясения можно разделить на два вида: краевое и внутриплитовые

Временное сопротивление кирпичной (каменной) кладки осевому растяжению по неперевязанным швам.

Определение прочности сцепления (временное сопротивление кирпичной кладки осевому растяжению по неперевязанным швам) проводят путем испытания на осевое растяжение элементов кладки стен на строительной площадке или на специальных образцах, изготовленных в лаборатории. Испытания прочности сцепления в кладке стен строящихся зданий проводят строительные лаборатории с целью контроля соответствия требованиям проекта.

Сущность метода заключается в определении характеристики удельной работы для разделения кирпича (камня) и раствора при действии осевого растягивающего усилия, направленного перпендикулярно плоскости их контакта (по неперевязанным швам).

Для испытания кладки на сцепление применяют следующее оборудование: Сборное гидравлическое испытательное оборудование; Гидравлическое испытательное оборудование с возможностью автоматической записи результатов испытаний. В соответствии с действующим СНиП II-22-81*(10) нормальное сцепление Rt зависит только от предела прочности раствора при сжатии и вида камня. При этом повышение прочности с возрастанием прочности раствора выше 5 МПа не учитывается.

4. Встроенные сооружения и конструкции и требования к ним.

Использование встроенных строительных систем является одним из методов, обеспечивающих повышение надежности, долговечности и капитальности здания. Встроенная система может быть реализована в сборном, монолитном и сборно-монолитных вариантах. Главной отличительной особенностью встроенной системы является то, что она имеет самостоятельные фундаменты, поэтому сама воспринимает все технологические и эксплуатационные нагрузки, частично или полностью освобождая от них стеновые ограждающие конструкции. Это позволяет осуществить надстройку здания независимо от несущей способности старых фундаментов и стенового ограждения, значительно сократить объемы работ по укреплению основания, усилению существующих фундаментов и стен.

5. Выбор площадок строительства в сейсмических районах.

Сейсмичность площадки строительства следует определять по действующим картам сейсмического микрорайонирования или на основании результатов сейсмического микрорайонирования территорий, выполняемого специализированными организациями.

В районах, для которых отсутсвтуют карты сейсмического микрорайонирования, сейсмичность площадки строительства допускается определять по таблице 4.1 СНиП РК 2.03-30-2006, исходя из сейсмичности района строительства и категории грунта по сейсмическим свойствам.

На территориях, расположенных в зонах возможного возникновения очагов землетрясений с магнитудами 7, 1 и более, определение сейсмичности площадок строительства по данным табл. 4.1, не допускается.

Сейсмичность площадки строительства не допускается изменять, исходя из:

А) конструктивных особенностей фундаментов и глубины их заложения;

Б) изменения характеристик грунтов в результате их усилений или замены на локальном участке.

Зависимость скорости распространения сейсмических волн от свойств грунтов.

Скорости распространения упругих волн являются определенным диагностическим признаком горной породы. Методы их определения делятся на лабораторные (измерения на образцах), скважинные (сейсмические и акустические наблюдения в скважинах), полевые (расчет скорости в результате интерпретации данных сейсморазведки).
Скорости распространения волн определяются составом, строением и состоянием горных пород, которые, в свою очередь, зависят от гранулометрического и минерального состава твердых частиц, глубины залегания, возраста пород, степени метаморфизма, плотности, пористости, трещиноватости, разрушенности, выветренности, водонасыщенности, нефтегазонасыщенности и других факторов.

Наименьшими скоростями обладают рыхлые сухие пески (0, 5 - 1 км/с), нефть (~1, 2 км/с), вода (~1, 5 км/с), глины (1, 3 - 3 км/с), уголь (1, 8 - 3, 5 км/с). Большие скорости (3 - 6 км/с) у скальных осадочных пород (известняки, мрамор, доломит, соль и др.). Самые большие (4 - 7 км/с) - у изверженных и метаморфических пород.
Все остальные факторы, которые делают породу более массивной, сцементированной, консолидированной - например, водонасыщенность, замерзание, степень метаморфизма - делают больше. С увеличением раздробленности, трещиноватости, рыхлости, пористости (при заполнении пор воздухом или газом) уменьшается. Нефтенасыщенные породы по мало отличаются от водонасыщенных. Для сильно рассланцованных пород характерно различие скоростей в разных направлениях (анизотропия): у них скорость на 10 - 20 % больше вдоль, чем вкрест напластования. Чем больше абсолютный возраст пород и глубина залегания, тем больше скорость. Для осадочных пород известна следующая эмпирическая формула зависимости скорости от этих факторов, где - коэффициент пропорциональности.

.

Магнитуда землетрясений

Магнитуда землетрясений — условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением. Магнитуда пропорциональна логарифму энергии землетрясений и позволяет сравнивать источники колебаний по их энергии.

Значение магнитуды землетрясений определяется из наблюдений на сейсмических станциях. Колебания грунта, возникающие при землетрясениях, регистрируются специальными приборами — сейсмографами.

Результатом записи сейсмических колебаний является сейсмограмма, на которой записываются продольные и поперечные волны. Наблюдения над землетрясениями осуществляются сейсмической службой страны. Магнитуда М, интенсивность землетрясения в баллах и глубина очага Н связаны между собой (см. табл.1).

Сейсмологи используют несколько магнитудных шкал. В Японии используют шкалу из семи магнитуд. Именно из этой шкалы исходил Рихтер К. Ф., предлагая свою усовершенствованную 9-магнитудную шкалу. Шкала Рихтера— сейсмическая шкала магнитуд, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Магнитуда самых сильных землетрясений по шкале Рихтера не превышает 9.

 

Сейсмические волны, виды.

СЕЙСМИЧЕСКИЕ ВОЛНЫ (а. seismic waves; н. seismische Welle; ф. ondes sismiques; и. onda sismica) — колебания, распространяющиеся в Земле от природных (землетрясений, извержений вулканов, обвалов в карстовых полостях, горных ударов и др.) или искусственных (взрывов, вибраторов, пневматических, газодинамических, электроискровых, гидравлических) источников. Частотный диапазон сейсмических волн от 0, 0001 Гц до 100 Гц. Вблизи очагов сильных землетрясений сейсмические волны обладают разрушительной силой, на значительных расстояниях от источников их интенсивность уменьшается вследствие затухания. Для регистрации сейсмических волн используются сейсмографы.
В однородной изотропной идеально-упругой твёрдой среде вдали от границ раздела, в т.ч. вдали от поверхности Земли, могут распространяться сейсмические волн только двух типов: продольные (Р) и поперечные (S). Продольные сейсмические волны переносят изменения объёма (сжатия и растяжения) в среде. Движения частиц в них совершаются параллельно направлению распространения волны, а деформации представляют собой суперпозицию всестороннего сжатия (растяжения) и чистого сдвига. Поперечные сейсмические волн не образуют в среде объёмных изменений, движения частиц в них происходят перпендикулярно направлению распространения волны, а деформация является чистым сдвигом.

Скорость продольных волн примерно в 3 раз больше скорости поперечных волн. Волны Р и S распространяются из источника по объёму Земли (объёмные волны). Их амплитуда для однородной и изотропной среды убывает обратно пропорционально расстоянию от источника.
На границах раздела и других неоднородностях в Земле наблюдаются явления отражения, преломления и обмена типов сейсмических волн. Вблизи границ возникают и распространяются поверхностные волны Рэлея и Лява. Первые являются суперпозицией неоднородных продольных и поперечных сейсмических волн, вторые — только поперечных. Волны, Рэлея возникают в присутствии одной границы раздела (поверхности Земли), Лява — двух и более. В Земле скорость поверхностных волн меньше скорости поперечных волн и зависит от частоты. Амплитуда волн Рэлея и Лява убывает приблизительно обратно пропорционально корню квадратному из расстояния до источника.

 

Требования к встроенным сооружениям и конструкциям.

СНиП 2.09.04-87
Вставка, встройка - часть здания, предназначенная для размещения административных и бытовых помещений, располагаемая в пределах производственного здания по всей его высоте и ширине (вставка), части его высоты или ширины (встройка) и выделенная противопожарными преградамиПристройка - часть здания, предназначенная для размещения административных и бытовых помещений, отделяемая от производственных зданий и помещений противопожарными преградами.

ГОСТ 28984-91
Вставка - геом. пространство между двумя смежными основными координационными плоскостями в местах разрыва модульной координационной системы, в том числе в местах деформационных швов..

СНиП 31-03-01
Вставка (встройка) в одноэтажном производственном здании - двух- или многоэтажная часть здания, размещенная в пределах одноэтажного здания по всей его высоте и ширине (вставка) или части высоты и ширины (встройка), выделенная ограждающими конструкциями.
конструкции встроенные: Металлические конструкции, находящиеся внутри контурапроизводственного здания, опирающиеся на основной несущий каркас и предназначенные дляустройства ограждающих конструкций: технологических, служебных, бытовых и административных.

К встроенным конструкциям, например, можно отнести помещения (будки) дляразмещения бытовок, пультов управления, инструменталок и других технологических нужд; площадкидля установки и обслуживания технологического оборудования, переходные, посадочные, для ремонтамостовых кранов, а также лестницы различного назначения.

 

Требования к выбору площадок строительства.

Площадки для строительства предприятий надлежит выбирать, а размещение на них зданий и сооружений следует предусматривать в соответствии с требованиями главы СНиП по проектированию генеральных планов промышленных предприятий и требованиями настоящих Норм.

лощадки для строительства предприятий должны выбираться с учетом аэроклиматической характеристики и рельефа местности, прямого солнечного облучения и естественного проветривания, а также с учетом условий рассеивания в атмосфере производственных выбросов и условий туманообразования.

Для предприятий, их отдельных зданий и сооружений с технологическими процессами, являющимися источниками производственных вредностей, в зависимости от мощности, условий осуществления технологического процесса, характера и количества выделяемых в окружающую среду вредных и неприятно пахнущих веществ, создаваемого шума, вибраций, электромагнитных волн радиочастот, ультразвука и других вредных факторов, а также с учетом предусматриваемых мер по уменьшению неблагоприятного влияния их на окружающую среду и обеспечивающих соблюдение требований разделов 9 - 14 настоящих Норм в соответствии с санитарной классификацией предприятий, производств и объектов, устанавливаются следующие размеры санитарно-защитных зон для предприятий:

класса 1 - 1000 м;

класса 2 - 500 м;

класса 3 - 300 м;

класса 4 - 100 м;

класса 5 - 50 м.

Территория санитарно-защитной зоны должна быть благоустроена и озеленена по проекту благоустройства, разрабатываемому одновременно с проектом строительства или реконструкции предприятия. Проект благоустройства и выбор пород зеленых насаждений следует составлять в соответствии с требованиями главы СНиП по проектированию генеральных планов промышленных предприятий.

При проектировании благоустройства санитарно-защитной зоны следует предусматривать сохранение существующих зеленых насаждений. Со стороны селитебной территории надлежит предусматривать полосу древесно-кустарниковых насаждений шириной не менее 50 м, а при ширине зоны до 100 м - не менее 20 м.

 

Требования к железобетонным перекрытиям и покрытиям.

Основным материалом для устройства перекрытий в современном строительстве является железобетон. Железобетонные перекрытия разделяют на сборные и монолитные, бетонируемые в опалубке. В последние годы применяют в основном сборные и монолитные перекрытия.
Перекрытия должны удовлетворять требованиям прочности, жесткости, огнестойкости, долговечности, звуко- и теплоизоляции, если они отделяют отапливаемые помещения от неотапливаемых или от наружной среды. Перекрытия в помещениях с мокрыми процессами должны быть водонепроницаемыми, а в помещениях, с выделением газов - газонепроницаемыми.
Такие перекрытия обладают рядом ценных качеств, главными из которых являются большая прочность, долговечность и огнестойкость. При проектировании конструкций элементов сборных железобетонных перекрытий необходимо стремиться укрупнять их для сокращения числа монтажных операций и стыковых сопряжений.
Железобетонные покрытия применяются для складов постоянного типа. Эти покрытия отличаются долговечностью и безопасностью в пожарном отношении. Железобетонные покрытия могут быть монолитными и сборными
Железобетонные покрытия большепролетных зданий по сравнению с металлическими обладают такими преимуществами, как огнестойкость, долговечность, экономия стали, меньшая стоимость и незначительность эксплуатационных расходов
Поверхность железобетонного покрытия изолируют одним-двумя слоями битума. По битуму делают песчано-гравийную дренирующую отсыпку толщиной 10 - 20 см, затем кладут два-три слоя рубероида и слой грунта 40 - 50 см, на котором устраивают одер-новку
Тип и конструкция железобетонного покрытия труб или отдельных грузов, монтируемых на трубопроводе, устанавливаются в проекте перехода и согласовываются со строительной организациейВ складских помещениях устраиваются деревянные и железобетонные покрытия, а также покрытия по металлическим конструкциям. Несущие части деревянных покрытий делаются в виде наклонных и висячих конструкции. В складах без внутренних опор применяют балки н фермы, изготовленные из дерева.

Требования к материалам зданий с несущими стенами из монолитного железобетона.

Требования к материалам стен зданий с из железобетонных объемных блоков.

Объемно-блочные здания следует проектировать из цельноформованных или сборных объемных блоков, изготавливаемых из тяжелого или легкого бетонов и объединенных в единую пространственную систему, воспринимающую сейсмические воздействия.
В объемно-блочных зданиях, наряду с объемными блоками, для восприятия сейсмических нагрузок допускается применять «скрытый» монолитный каркас и диафрагмы жесткости, расположенные в вертикальных полостях между блоками.

7.79. Стены объемных блоков допускается выполнять плоскими (однослойными и многослойными) и ребристыми.

Плоские однослойные стены и несущие слои многослойных стен должны иметь толщину не менее 70 мм.

Ребристые стены должны иметь толщину полок не менее 50 мм и высоту ребер (включая толщину полок) не менее 100 мм.

7.80. Объемные блоки должны изготавливаться из бетона класса не менее В7, 5.

7.81. Армирование плоских стен объемных блоков допускается выполнять:

двухсторонним, в виде пространственных каркасов или сварных сеток;

одинарным, в виде плоской сварной сетки.


Требования к материалам стен и связям сдвига крупнопанельных зданий.

Крупнопанельные здания

6.10.1 Крупнопанельные здания следует проектировать с продольными и поперечными стенами, объединенными между собой перекрытиями и покрытиями в единую пространственную систему, воспринимающую сейсмические нагрузки.

При проектировании крупнопанельных зданий необходимо:

предусматривать панели стен и перекрытий, как правило, размером на комнату;

осуществлять вертикальные и горизонтальные стыковые соединения панелей продольных и поперечных стен между собой и с панелями перекрытий (покрытий) сваркой арматурных выпусков, закладных деталей или на болтах и замоноличиванием вертикальных и горизонтальных стыков мелкозернистым бетоном класса не ниже В15 и не ниже класса бетона панелей. Все замоноличиваемые торцевые стыкуемые грани панелей стен и перекрытий (покрытий) следует выполнять с рифлеными или зубчатыми поверхностями. Глубину (высоту) шпонок и зубьев принимают не менее 4 см;

при опирании перекрытий на наружные стены здания и стены у антисейсмических швов предусматривать охват вертикальной арматуры стеновых панелей арматурой швов, приваренной к выпускам арматуры плит перекрытия.

При соответствующем обосновании допускается выполнять вертикальные стыковые соединения стен на закладных деталях, без устройства замоноличиваемых вертикальных колодцев и рифленых поверхностей граней панелей стен.

6.10.2 Армирование стеновых панелей следует выполнять двухсторонним, в виде пространственных каркасов или арматурных сеток. Площадь вертикальной и горизонтальной арматуры, устанавливаемой у каждой плоскости панели, должна составлять не менее 0, 05% площади соответствующего сечения стены.

Толщина внутреннего несущего слоя многослойных панелей должна определяться по результатам расчета и приниматься не менее 100 мм.

Закладные детали, служащие для соединения панелей между собой, должны быть приварены к рабочей арматуре.

6.10.3 В местах пересечения стен должна размещаться вертикальная арматура, непрерывная на всю высоту здания. Вертикальная арматура также должна устанавливаться по граням дверных и оконных проемов и при регулярном расположении проемов поэтажно стыковаться. Площадь поперечного сечения арматуры, устанавливаемой в стыках и по граням проемов, должна определяться по расчету, но приниматься не менее 2 см .

В местах пересечения стен допускается размещать в наружных панелях не более 60% расчетного количества вертикальной арматуры с размещением остальной части арматуры во внутренних стеновых панелях на участке не более 1 м от места пересечения стен (за исключением конструктивной арматуры).

6.10.4 Решения стыковых соединений должны обеспечивать восприятие расчетных усилий растяжения и сдвига. Сечение металлических связей в стыках панелей (горизонтальных и вертикальных) определяют расчетом, но их минимальное сечение должно быть не менее 1 см на 1 погонный метр шва.

6.10.5 Встроенные лоджии выполняют длиной, равной расстоянию между соседними несущими стенами. В зданиях на площадках сейсмичностью 8 и 9 баллов в плоскости наружных стен в местах размещения лоджий следует предусматривать устройство железобетонных рам. В зданиях высотой до пяти этажей при расчетной сейсмичности 7 и 8 баллов допускается устройство пристроенных лоджий с выносом не более 1, 5 м и связанных с основными стенами металлическими связями.

Требования к ограждающим ненесущим стенам и перегородкам каркасных зданий.

Перегородки

6.5.1 Перегородки следует выполнять ненесущими. Перегородки следует соединять с колоннами, несущими стенами, а при длине более 3, 0 м - и с перекрытиями. Допускается выполнять перегородки из штучной кладки в соответствии с требованиями 6.5.5 и 6.14.

6.5.2 Конструкция крепления перегородок к несущим элементам здания и узлов их примыкания должна исключать возможность передачи на них горизонтальных нагрузок, действующих в их плоскости. Крепления, обеспечивающие устойчивость перегородок из плоскости, должны быть жесткими.

Прочность перегородок и их креплений должна быть в соответствии с 5.5 подтверждена расчетом на действие расчетных сейсмических нагрузок из плоскости.

6.5.3 Для обеспечения независимого деформирования перегородок следует предусматривать антисейсмические швы между вертикальными торцевыми и верхней горизонтальной гранями перегородок и несущими конструкциями здания. Ширину швов принимают по максимальному значению перекоса этажей здания при действии расчетных нагрузок с учетом прогиба перекрытия в эксплуатационной стадии, но не менее 20 мм. Швы заполняют упругим эластичным материалом.

6.5.4 Крепление перегородок к несущим железобетонным конструкциям следует выполнять соединительными элементами, приваренными к закладным изделиям или накладным элементам, а также анкерными болтами или стержнями.

Крепление перегородок к несущим элементам пристрелкой дюбелями не допускается.

6.5.5 Перегородки из кирпича или камня, при их применении на площадках сейсмичностью 7 баллов, следует армировать на всю длину не реже, чем через 700 мм по высоте арматурными стержнями общим сечением в шве не менее 0, 2 см .

Кирпичную (каменную) кладку перегородок на площадках сейсмичностью 8 и 9 баллов, в дополнение к горизонтальному армированию, следует усиливать вертикальными двухсторонними арматурными сетками, установленными в слоях цементного раствора марки не ниже М100 толщиной 25-30 мм. Арматурные сетки должны иметь надежное соединение с кладкой.

6.5.6 Дверные проемы в кирпичных (каменных) перегородках на площадках сейсмичностью 8 и 9 баллов должны иметь железобетонное или металлическое обрамление.

Требования к простенкам, проемам и выносам карнизов кирпичных (каменных) стен зданий.

106. Требования к размерам зданий в плане в сейсмических районах.

7.1. Объемно-планировочные и конструктивные решения зданий следует принимать с учетом указаний п. 3.4.

7.2. Здания следует разделять вертикальными антисейсмическими швами в случаях, если:

здание имеет сложную неправильную конфигурацию в плане и по высоте;

размеры здания в плане не соответствуют положениям пункта 7.3;

объемно-планировочные решения здания не соответствуют положениям пунктов 7.4 и 7.5.

7.3. Размеры зданий в плане или расстояния между антисейсмическими швами не должны превышать размеров, указанных в табл. 7.1.

Высота зданий (в метрах) и количество этажей не должны превышать размеров, указанных в

Сейсмичность строительной площадки, в баллах Размеры по длине (ширине), в м
^ Категория грунтов по сейсмическим свойствам
I II III
7 150/80 150/80 96/80
8 96/80 96/80 72/60
9 96/60 72/60 60/60
10 60/45 60/45 45/36

Требования к размерам зданий по высоте в сейсмических районах.

При различных конструктивно-планировочных решениях разных этажей здания следует применять меньшее из приведенных в таблице 7 значение параметров для соответствующих несущих конструкций.


Таблица 7 - Предельная высота здания в зависимости от конструктивного решения

       
Несущая конструкция Предельная высота, м (этажность) при сейсмичности площадки в баллах
 
1 Стальной каркас По требованиям для несейсмических районов
2 Железобетонный каркас:      
рамно-связевый, безригельный связевый (с железобетонными диафрагмами, ядрами жесткости или стальными связями) 57(16) 43(12) 34(9)
безригельный без диафрагм и ядер жесткости 14(4) 11(3) 8(2)
рамный с заполнением из штучной кладки, воспринимающей горизонтальные нагрузки, в том числе, каркасно-каменной конструкции 34(9) 24(7) 18(5)
рамный без заполнения и с заполнением, отделенным от каркаса 24(7) 18(5) 11(3)
3 Стены из монолитного железобетона 75(24) 70(20) 57(16)
4 Крупнопанельные железобетонные стены 57(16) 50(14) 43(12)
5 Объемно-блочные и панельно-блочные железобетонные стены 50(16) 50(16) 38(12)
6 Стены из крупных бетонных или виброкирпичных блоков 29(9) 23(7) 17(5)
7 Стены комплексной конструкции из керамических кирпичей и камней, бетонных блоков, природных камней правильной формы и мелких блоков, усиленные монолитными железобетонными включениями:      
1-й категории 20(6) 17(5) 14(4)
2-й категории 17(5) 14(4) 11(3)
8 Стены из керамических кирпичей и камней, бетонных блоков, природных камней правильной формы и мелких блоков, кроме указанных в 7:      
1-й категории 17(5) 15(4) 12(3)
2-й категории 14(4) 11(3) 8(2)
9 Стены из мелких ячеистых и легкобетонных блоков 8(2) 8(2) 4(1)
10 Деревянные бревенчатые стены, брусчатые, щитовые 8(2) 8(2) 4(1)
Примечания 1 За предельную высоту здания принимают разность отметок низшего уровня отмостки или поверхности земли, примыкающей к зданию, и низа верхнего перекрытия или покрытия. Подвальный этаж включают в число этажей в случае, если верх его перекрытия находится выше средней планировочной отметки земли не менее чем на 2 м. 2 В случаях, когда подземная часть здания конструктивно отделена от грунтовой засыпки или от конструкций примыкающих участков подземной застройки, подземные этажи включают в этажность и предельную высоту здания. 3 Верхний этаж с массой покрытия менее 50% средней массы перекрытий здания в этажность и предельную высоту не включают. 4 Высоту зданий общеобразовательных учреждений (школы, гимназии и т.п.) и учреждений здравоохранения (лечебные учреждения со стационаром, дома престарелых и т.п.) при сейсмичности площадки свыше 6 баллов следует ограничивать тремя надземными этажами. В случае, если по функциональным требованиям возникает необходимость увеличения числа этажей проектируемого здания сверх указанного, следует применять специальные системы сейсмозащиты (сейсмоизоляция, демпфирование и т.п.) для снижения сейсмических нагрузок.

Требования к стальным и деревянным перекрытиям и покрытиям.

Деревянные здания

6.15.1 Деревянные здания в сейсмических районах допускается проектировать каркасными, панельными, брусчатыми и бревенчатыми (СП 64.13330).

6.15.2 В каркасных и панельных зданиях сейсмическую нагрузку воспринимают вертикальные и горизонтальные элементы каркаса в сочетании с раскосами и обшивками.

6.15.3 Шаг стоек рекомендуется принимать не более 3 м. Каждая стойка должна крепиться к фундаменту анкерными болтами и иметь металлические связи с соответствующими им стойками по высоте здания и с элементами горизонтальных обвязок в уровне перекрытий.

6.15.4 Перекрытия каркасных зданий могут выполняться с балками из сплошных или клеевых брусьев, круглых или окантованных бревен. Перекрытия панельных зданий могут выполняться из панелей или отдельных балок. В уровне перекрытий каркасных и панельных зданий по всем несущим стенам должны быть устроены непрерывные обвязки. Элементы обвязки должны соединяться между собой по всему контуру, включая угловые стыки металлическими накладками на болтах или стяжками. Каждая балка перекрытия должна крепиться металлическими связями с балками примыкающего участка перекрытия и горизонтальными обвязками по контуру стен здания.

6.15.5 Жесткость стен и перекрытий каркасных и панельных зданий должна обеспечиваться раскосами, обшивкой из конструктивной фанеры или диагональной обшивкой из шпунтованных досок.

6.15.6 Конструкция панелей должна включать контурную обвязку из брусьев с раскосами и обшивки из конструктивной фанеры или диагональные обшивки из шпунтованных досок. Каждая панель должна по всем углам быть связана с примыкающими панелями, и горизонтальными обвязками в уровне перекрытий. Должны быть выполнены связи между вертикальными элементами обвязок панелей соседних этажей. Допускается конструктивно объединять связи панелей соседних этажей и их связи с обвязками в уровне перекрытий. Панели нижнего ряда должны быть связаны с фундаментом анкерными болтами. Допускается устанавливать один анкерный болт на две примыкающие стойки обрамления соседних панелей. Связи панелей между собой следует выполнять на болтах. Рекомендуется увеличивать жесткость панельных зданий креплением участка обшивки, выпущенной за контур обвязки панели стены или перекрытия к обвязке примыкающей панели.

6.15.7 Жесткость стен из брусьев или бревен должна обеспечиваться постановкой стальных нагелей или шипов из древесины твердых пород по всей площади стен в шахматном порядке не реже 70 см по длине, а также у углов и в пересечениях стен, на участках, примыкающих к оконным и дверным проемам.

6.15.8 Оконные и дверные проемы следует обрамлять жесткими вертикальными элементами, рассчитанными на восприятие сейсмических нагрузок из плоскости стены.

6.15.9 Венцы выше чердачного перекрытия, на которые должны опираться стропила, следует скреплять сквозными нагелями. Верхние венцы в углах и пересечениях следует объединять угловыми балками на врезках и сквозных нагелях.

6.15.10 В углах и пересечениях стен следует устанавливать сжимы в виде вертикальных стоек с обеих сторон, объединенных стяжными болтами с шагом по высоте не более 1, 5 м. При этом отверстия под болты в сжимах следует выполнять продолговатыми, не препятствующими осадке срубов. Стойки рекомендуется выполнять неразрезными на всю высоту здания. Сжимы также должны ставить у проемов с пролетом более 1, 5 м и на участках стен длиной более 6 м.

6.15.11 Пригонка венцов должна быть плотной. При сейсмичности 8 и 9 баллов следует применять врубку в полдерева с остатком не менее 25 см или без остатка с усилением углов плоскими уголками жесткости с прошивкой их гвоздями. В районах с расчетной сейсмичностью 7 баллов допускается врубка в полдерева с прошивкой двумя нагелями в узле по осям брусьев или впритык.

6.15.12 В рубленых домах балки перекрытия следует соединять со стенами врубкой, а в районах сейсмичностью 9 баллов балки перекрытий должны скрепляться стальными гнутыми металлическими полосами с креплением к балке болтами, а к стене нагелями.

6.15.13 В районах сейсмичностью 7 и 8 баллов в брусчатых и бревенчатых зданиях анкерные болты крепления обвязки по верху фундамента дополнительно следует устанавливать в углах и пересечениях стен, а при сейсмичности 9 баллов и в местах расположения сжимов. При этом, в целях обеспечения надежной связи стен с фундаментом, основные анкера должны пропускаться в обруб на 1-2 венца выше промежуточных дополнительных. Шаг основных анкеров следует принимать не более 1, 5 м при сейсмичности 9 баллов и не более 2 м при сейсмичности 7 и 8 баллов.

6.15.14 Конструкции крыш следует принимать безраспорными, преимущественно с легкой кровлей. Жесткость конструкций крыш должна обеспечиваться установкой раскосов между стойками в обоих направлениях плана здания.

Требования к устройству антисейсмических поясов.

Антисейсмические пояса   должны иметь ширину, как правило равную толщине стены. При толщине стены более 500 мм пояса могут быть на 120 мм меньше ширины. [2]

Антисейсмические пояса   нужно укладывать по всем продольным и поперечным стенам с применением непрерывного армирования. Железобетонные и армокаменные антисейсмические пояса должны иметь ширину, как правило, равную толщине стены. [3]

Стеновой кольцевой фундамент выполняет роль антисейсмического пояса  . Стены, как и у резервуаров для несейсмических районов, запроектированы из сборных элементов, на которые после монтажа навивается кольцевая арматура, создающая обжатие стен и воспринимающая растягивающие кольцевые усилия, возникающие в результате заполнения резервуара нефтью. После наиивки арматуры внешняя поверхность корпуса резервуара торкретируется, причем толщина защитного слоя торкрета около 25 мм. [4]

    Армирование монолитного рамиого узла н концевых участков ригелей н стоек поперечной арматурой.| Армирование сборного рамного узла.   [5]

 

Если в стенах большие оконные и дверные проемы, устраивают железобетонные горизонтальные антисейсмические пояса  , идущие по верху этих проемов. [6]

Если в стенах большие оконные и дверные проемы, устраивают железобетонные горизонтальные антисейсмические пояса  , идущие ио верху этих проемов. Такие пояса представляют собой горизонтальные рамы, передающие сейсмическую нагрузку на колонны каркаса. [7]

В ряде конструкций предлагается устраивать на различных по высоте уровнях стен специальные антисейсмические пояса  . Как правило, такие пояса устраиваются в нижней и верхней зонах стен резервуаров ( особенно в конструкциях прямоугольных резервуаров) и являются достаточной гарантией неразрушимости при небольших по силе сейсмических воздействиях. [8]

Столбы должны быть связаны и уровне перекрытий is двух направлениях балками, прогонами или другими конструкциями, заанкеренными в степы или антисейсмические пояса  . [9]

Антисейсмические пояса нужно укладывать по всем продольным и поперечным стенам с применением непрерывного армирования. Железобетонные и армокаменные антисейсмические пояса   должны иметь ширину, как правило, равную толщине стены. [10]


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 870; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.082 с.)
Главная | Случайная страница | Обратная связь