Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вопрос 7. Области применения ЭС и критерии использования ЭС при решении задач.



 

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.

а) Медицинская диагностика.

Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины. Система ставит соответствующий диагноз, исходя из представленных ей симптомов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций. Она состоит в общей сложности из 450 правил, разработанных с помощью группы по инфекционным заболеваниям Стэндфордского университета. Ее основополагающим моментом является использование вероятностного подхода. Система MYCIN справляется с задачей принятия решения путем назначения показателя определенности каждому из своих 450 правил. Поэтому можно представлять MYCIN как систему, содержащую набор правил вида “ЕСЛИ... ТО” с определенностью, которую предоставили люди – эксперты и которую изложили в правилах, указав свою степень доверия к каждому правилу по шкале от 1 до 10. Установив эти правила и связанные с ними показатели определенности, MYCIN идет по цепочке назад от возможного исхода, чтобы убедиться, можно ли верить такому исходу. Установив все необходимые исходные предпосылки, MYCIN формирует суждение по данному исходу, рассчитанное на основе показателей определенности, связанных со всеми правилами, которые нужно использовать.

б) Прогнозирование.

Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система “Завоевание Уолл-стрита” может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу. Она не относится к числу систем, основанных на знаниях, поскольку использует процедуры и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые способны за счет своей информации о конъюнктуре рынка помочь вам увеличить капитал, прогнозирующие системы уже сегодня могут предсказывать погоду, урожайность и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.

в) Планирование.

Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией. В отличие от XCON система XSEL является интерактивной.

г) Интерпретация.

Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Система PROSPECTOR, по аналогии с MYCIN, содержит большое число правил, относящихся к различным объектам, а также возможных исходов, выведенных на их основе. В этой системе используется также “движение по цепочке назад” и вероятности. Методы этой системы являются одними из лучших среди всех разработанных методов для любой из существующих ныне систем. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.

д) Контроль и управление.

Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях. Система AGE, разработанная в начале 80-х гг. фирмой Белл, типичная диагностическая система в данной области. Она используется для обнаружения неисправностей в телефонной сети и определения их характера. В настоящее время работы по ЭС в области электроники связаны с обучающими системами, помогающими находить отказы в электрических цепях и проектировать электронно-цифровые схемы.

е) Диагностика неисправностей в механических и электрических устройствах.

В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров. В инженерном деле типичный образец ЭС — это DELTA, система диагностики неисправностей, разработанная компанией “Дженерал Электрик” в середине 80-х гг. “Дженерал Электрик” планирует использовать DELTA на коммерческой основе для помощи обслуживающему персоналу при поиске неисправностей в дизель- электрических локомотивах. В настоящее время разрабатываются другие системы диагностирования неисправностей и обучения операторов сложных систем управления.

ж) Обучение.

Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д.Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т.Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.

Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования. Система, обеспечивающая сохранность жилища, может следить за окружающей обстановкой, распознавать происходящие события (например, открылось окно), выдавать прогноз (вор-взломщик намеревается проникнуть в дом) и составлять план действий (вызвать полицию).

Существует ряд прикладных задач, которые решаются с помощью систем, основанных на знаниях, более успешно, чем любыми другими средствами. При определении целесообразности применения таких систем нужно руководствоваться следующими критериями.

1. Данные и знания надежны и не меняются со временем.

2. Пространство возможных решений относительно невелико.

3. В процессе решения задачи должны использоваться формальные рассуждения. Существуют системы, основанные на знаниях, пока еще не пригодные для решения задач методами проведения аналогий или абстрагирования (человеческий мозг справляется с этим лучше). В свою очередь традиционные компьютерные программы оказываются эффективнее систем, основанных на знаниях, в тех случаях, когда решение задачи связано с применением процедурного анализа. Системы, основанные на знаниях, более подходят для решения задач, где требуются формальные рассуждения.

4. Должен быть, по крайней мере, один эксперт, который способен явно сформулировать свои знания и объяснить свои методы применения этих знаний для решения задач.

В таблице один приведены сравнительные свойства прикладных задач, по наличию которых можно судить о целесообразности использования для их решения ЭС.

Таблица 1. Критерий применимости ЭС.

применимы неприменимы
Не могут быть построены строгие алгоритмы или процедуры, но существуют эвристические методы решения. Имеются эффективные алгоритмические методы.
Есть эксперты, которые способны решить задачу. Отсутствуют эксперты или их число недостаточно.
По своему характеру задачи относятся к области диагностики, интерпретации или прогнозирования. Задачи носят вычислительный характер.
Доступные данные “зашумленны”. Известны точные факты и строгие процедуры.
Задачи решаются методом формальных рассуждений. Задачи решаются прецедурными методами, с помощью аналогии или интуитивно.
Знания статичны (неизменны). Знания динамичны (меняются со временем).

 

В целом ЭС не рекомендуется применять для решения следующих типов задач:

- математических, решаемых обычным путем формальных преобразований и процедурного анализа;

- задач распознавания, поскольку в общем случае они решаются численными методами;

- задач, знания о методах решения которых отсутствуют (невозможно построить базу знаний).

Даже лучшие из существующих ЭС, которые эффективно функционируют как на больших, так и на мини-ЭВМ, имеют определенные ограничения по сравнению с человеком-экспертом.

1. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний.

2. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью.

3. Навыки системы не возрастают после сеанса экспертизы.

4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.

5. ЭС не способны обучаться, не обладают здравым смыслом. Домашние кошки способны обучаться даже без специальной дрессировки, ребенок в состоянии легко уяснить, что он станет мокрым, если опрокинет на себя стакан с водой, однако если начать выливать кофе на клавиатуру компьютера, у него не хватит “ума” отодвинуть ее.

6. ЭС неприменимы в больших предметных областях. Их использование ограничивается предметными областями, в которых эксперт может принять решение за время от нескольких минут до нескольких часов.

7. В тех областях, где отсутствуют эксперты (например, в астрологии), применение ЭС оказывается невозможным.

8. Имеет смысл привлекать ЭС только для решения когнитивных задач. Теннис, езда на велосипеде не могут являться предметной областью для ЭС, однако такие системы можно использовать при формировании футбольных команд.

9. Человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.

Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число “решений” зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке.

Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

1. У них нет предубеждений.

2. Они не делают поспешных выводов.

3. Эти системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

5. Системы, основанные на знаниях, устойчивы к “помехам”. Эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. ЭС, не обремененные знаниями из других областей, по своей природе менее подвержены “шумам”. Со временем системы, основанные на знаниях, могут рассматриваться пользователями как разновидность тиражирования- новый способ записи и распространения знаний. Подобно другим видам компьютерных программ они не могут заменить человека в решении задач, а скорее напоминают орудия труда, которые дают ему возможность решат задачи быстрее и эффективнее.

6. Эти системы не заменяют специалиста, а являются инструментом в его руках.

 


Заключение

 

Экспертная система – это программа для компьютера, которая оперирует со знаниями в определенной предметной области с целью выработки рекомендаций или решения проблем.

При решении задач основными являются эвристические и приближенные методы.

Приобретение знаний – это передача потенциального опыта решения проблемы от некоторого источника знаний и преобразование его в вид, который позволяет использовать эти знания в программе.

Представление знаний — функция экспертной системы, которая рассматривается как средство отыскания методов формального описания больших массивов полезной информации с целью их последующей обработки с помощью символических вычислений.

Способность системы объяснить методику принятия решения иногда называют прозрачностью системы.

База знаний - совокупность всех имеющихся сведений о проблемной области, для которой предназначена данная экспертная система, записанных с помощью определенных формальных структур представления знаний (набора правил, фреймов, семантических сетей и пр.)

Эксперт – опытный специалист в некоторой предметной области, который играет важную роль при создании ЭС.

Предметной или проблемной областью называют совокупность взаимосвязанныхсведений, необходимых и достаточных для решения некоторого класса задач.

Диалог – это интерфейс, который обеспечивает общение между экспертом, пользователем на привычной для них терминологии с остальными компонентами системы.

Классифицируются приложения с ЭС по следующим параметрам: тип приложения; стадия существования; масштаб; тип проблемной среды.

Стратегии – основной механизм, обеспечивающий разнообразное управление в рамках общей схемы работы интерпретатора.

Существующие методы решения задач, используемые в экспертных

системах: методы поиска в одном пространстве; методы поиска при неточных и неполных данных; методы поиска, использующие несколько моделей..

Методы поиска решений в одном пространстве обычно делятся на: поиск в пространстве состояний; поиск методом редукции; эвристический поиск; поиск методом “генерация-проверка”.

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.


Список используемой литературы

1. Балдин К.В., Уткин В.Б. Информационные системы в экономике: учебник / Балдин К.В., Уткин В.Б. - 5-е изд. - М.: Дашков и К, 2008.

2. Информационные системы в экономике: учебник / Под ред. Г.А. Титоренко. - 2-е изд., перераб и дп. - М.: ЮНИТИ, 2008.

3. Банк В.Р., Зверев В.С. Информационные системы в экономике.: Учебник / Банк В.Р., Зверев В.С. - М.:: Экономистъ, 2005.

4. Информационные системы бухгалтерского учета.: Учебник для студентов вузов, обучающихся по специальности 060500 " " бух. учет, анализ, аудит" " / Под ред. В.В. Подольского. - 2-е изд., перераб. и доп. - М.:: ЮНИТИ-ДАНА, 2005.

5. Информационные системы в экономике. Практикум. Акинин П.В., ред. М.: КноРус, 2008.

6. Информационные системы в экономике. Учеб. пособие для вузов. Горбенко А.О. М.: Бином. Лаборатория знаний. 2010.

7. Информационные системы в экономике: Учеб. пособие для вузов. (Высшее образование). Чистов Д.В., ред. М.: Инфра-М. 2011.

8. Информационные системы в экономике: Учеб. пособие для вузов. Изд.2, доп. и перераб. (Вузовский учебник). Романов А.Н., Одинцов Б.Е., ред. М.: Вузовский учебник, 2010.

9. Информационные системы в экономике: Системы экономического анализа: Учеб. пособие для вузов. Хлебников А.А. Изд. Ростов н/Д.: Феникс, 2007

10. Исаев Г. Н. Информационные системы в экономике: учебник. – М.: Омега-Л, 2011.

 


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 1197; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.032 с.)
Главная | Случайная страница | Обратная связь