Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение действительного предела передаваемой мощности и коэффициента запаса статической устойчивости.



Определить действительный предел передаваемой мощности электропередачи и коэффициента запаса статической устойчивости (при учёте регулирующего эффекта нагрузки). Принять

Если мощность приёмной системы соизмерима с мощностью электропередачи, то напряжение нагрузки не остаётся постоянным при изменениях режима работы электропередачи. При представлении приёмной системы некоторой нагрузкой и местной электростанцией оценка статической устойчивости передачи производится исходя из постоянства э.д.с. обоих станций и . Увеличение угла между векторами э.д.с., а следовательно, и угла между и , сопровождается уменьшением промежуточных напряжений, в том числе и напряжения на шинах нагрузки. Если при построении характеристики передаваемой мощности исходить из выражения , то напряжение следует считать переменным. Построив семейство синусоид для различных значений напряжения , действительную характеристику мощности, учитывая снижение напряжения нагрузки, можно получить переходя при увеличении с одной синусоиды на другую в соответствии с уменьшением напряжения. Действительная характеристика мощности в силу непрерывного уменьшения напряжения будет иметь падающий характер и, следовательно, максимум этой характеристики (т.н. действительный предел мощности) достигается при угле меньше 90 градусов.

Таким образом, под действительным пределом передаваемой мощности, в данном случае, принимается предел передаваемой мощности по электропередаче, когда мощность приёмной системы соизмерима с мощностью передающей системы.

Значение действительного предела мощности также получается меньше идеального предела мощности, т.е. амплитуды синусоиды, построенной при постоянстве напряжения исходного режима .

Влияние нагрузки на напряжение в точках её включения определяется, так называемым, регулирующим эффектом нагрузки, т.е. степенью снижения активной и реактивной нагрузки с уменьшением напряжения на её выводах, характеризуемой производными и .

Увеличение угла между передающей и местной электростанциями сопровождается снижением напряжения на нагрузке. Однако с уменьшением напряжения уменьшается и мощность, потребляемая нагрузкой, что в некоторой степени поддерживает напряжение нагрузки, снижающееся при увеличении угла . Влияние регулирующего эффекта нагрузки при представлении её шунтом постоянной проводимости (или сопротивления) на действительный предел передаваемой мощности довольно значительно и с ним приходится считаться в практических расчетах устойчивости.

Выполнение этого раздела, как и предыдущего, следует начинать с составления схемы замещения. По заданию схема является трёхмашинной, которую следует преобразовать в двухмашинную. Приведённые параметры генератора G1, трансформаторов Т1, Т2 и линии, найденные в предыдущем пункте, могут быть использованы в этой схеме. Здесь же следует преобразовать участок схемы с генераторами G2, G3, трансформаторы Т3, Т4. в эквивалентный генератор G(2, 3) и эквивалентный трансформатор Т(3, 4).

Расчёт параметров G2, G3, Т3, Т4 производится по следующим формулам:

 


 

рис.5 Схема замещения электрической системы

Эквивалентные сопротивления участков схемы (рис.5) определяется по формулам:

Нагрузки в схему замещения следует вводить сопротивлением , поэтому заданную мощность нагрузки необходимо пересчитать в сопротивление:

где:

Действительный предел передаваемой мощности обычно определяется исходя из постоянства э.д.с. передающей станции и э.д.с. эквивалентной станции [2]. Поскольку по заданию передающая станция оборудована гидрогенераторами (явнополюсными машинами), а приёмная система – турбогенераторами (неявнополюсными машинами), то формула для определения действительного предела передаваемой мощности запишется в виде:

, где:

- собственная и взаимная проводимости, которые могут быть определены, в данном случае, методом единичных токов (преобразуем схему рис 5 в схему рис.6).

рис.6 Схема замещения системы для определения собственных и взаимных проводимостей

Суть метода единичных токов для определения проводимостей заключается в следующем: пусть ток в ветви с сопротивлением равен единице ( ), тогда напряжение в точке b (точке подключения нагрузки):

Ток, протекающий в ветви с сопротивлением :

Ток в ветви :

Напряжение в точке :

Собственная проводимость:

пересчитать!!!

Взаимная проводимость:

Для проверки, собственную и взаимную проводимость необходимо определить методом преобразований. Способ преобразования, в данном случае, основывается на преобразовании трёхлучевой звезды (см.рис.5) с лучами в эквивалентный треугольник. Это даёт возможность исключить узел, содержащий нагрузку, а следовательно и напряжение, которое в данном случае является переменным (при изменении нагрузки оно меняется), т.е. свести трёхузловую схему к двухузловой. С другой стороны, с помощью такого преобразования удаётся найти выражение для определения взаимного сопротивления, поскольку оно будет равно соответствующей стороне эквивалентного треугольника, т.е.:

Собственное сопротивление может быть определено по формуле:

Тогда:

Сравнивая результаты двух методов, можно сделать вывод, что расчёт проведён верно.

Э.д.с. определяется по формуле:

, где:

Действительный предел передаваемой мощности:

Коэффициент запаса с учётом регулирующего эффекта нагрузки определяется по формуле:

Коэффициент запаса получился меньше, чем при идеальном пределе передаваемой мощности: 71, 6% < 78, 9 %

 

Влияние характеристик нагрузки, т.е. регулирующего эффекта нагрузки на действительный предел передаваемой мощности проявляется через собственные и взаимные проводимости, которые определяются с учётом сопротивлений нагрузки и местных генераторов.

Вывод: проведённый расчёт показал, что действительный предел передаваемой мощности меньше идеального ( ), т.к. при расчёте идеального предела передаваемой мощности приёмная система считается системой бесконечной мощности, т.е. регулирующий эффект нагрузки не учитывается.

4. Определение предела передаваемой мощности и коэффициента запаса статической устойчивости при установке на генераторе G1 регуляторов возбуждения.


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 97; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь