Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные положения лучистого теплообмена
Все тела непрерывно посылают в окружающее их пространство электромагнитные волны различной частоты (длины). Большинство твердых и жидких тел излучают энергию всех длин волн в интервале от нуля до бесконечности, т.е. имеют сплошной спектр излучения. Газы испускают энергию только в определенных интервалах длин волн и имеют селективный спектр излучения. Твердые тела излучают и поглощают энергию поверхностью – поверхностное излучение, а газы объемом – объемное излучение. Излучение волн любой длины всегда превращается (трансформируется) в тепловую энергию. Длина волны электромагнитного излучения λ, мкм (микрометр – 10− 6 м), находится в пределах: для ультрафиолетовых – 0, 02…0, 4; видимых (световых) – 0, 4…0, 8; тепловых (инфракрасных) – 0, 8…800 мкм. Но для световых и инфракрасных (тепловых) лучей с длиной волны от 0, 4 до 800 мкм это превращение выражено наиболее сильно, и эти лучи называют тепловыми, а процесс их распространения – тепловым излучением или радиацией. Тепловое излучение свойственно всякому телу, если его абсолютная температура отлична от нуля. Инфракрасное (температурное) излучение определяется тепловым состоянием тела – его температурой. Интенсивность теплового излучения резко увеличивается с ростом температуры. В определенных условиях температура достигает порядка 600 °С и выше, и превалирующим видом теплообмена (по сравнению с конвекцией) является радиация. Свое преимущество она сохраняет и для низких температур при соответствующем расположении поверхностей, обменивающихся лучистой теплотой. При лучистом теплообмене все тела излучают энергию друг на друга. В результате баланса теплоты лучистая энергия всегда переносится от тел с более высокой температурой к телам с меньшей температурой. Наиболее интенсивна передача теплоты радиацией в условиях вакуума или разрежения. Интегральный или полный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью потока интегрального излучения, или излучательной способностью, Вт/м2:
откуда
Если излучательная способность Е одинакова для всех элементов поверхности F, то Q = EF. В этом случае излучательная способность тела Е численно равна количеству энергии (Дж), выделяемой с единицы поверхности (м2) в единицу времени (с): Дж/(м2⋅ с) = Вт/м2. Каждое тело не только излучает, но и поглощает лучистую энергию. Если тепловой луч на своем пути встречает какое-нибудь тело с площадью поверхности F= 1, то из всего общего количества падающей на тело лучистой энергии – Eо (Qо), часть ее отражается в окружающее пространство – Еот (Qот), некоторая доля энергии, проникающей в тело, поглощается – Епог (Qпог) и трансформируется в тепловую энергию, а остальная часть проходит сквозь тело и через окружающее пространство – Епр (Qпр), после чего попадает на другие тела. Таким образом, падающий на тело лучистый поток может быть разделен на три части: отраженную, поглощенную и пропущенную. Следовательно: Eо = Еот + Епог + Епр или Qо = Qот + Qпог + Qпр. Для количественной оценки каждой части E (Q) вводят понятия: • отношение отраженной энергии к энергии, падающей на поверхность тела, называют отражательной способностью тела: R = Qот / Qо; • отношение поглощенной энергии к падающей энергии называют поглощательной способностью тела: А = Qпог / Qо; • отношение энергии, прошедшей сквозь тело, к падающей энергии называют пропускательной способностью тела: D = Qпр / Qо. В соответствии с законом сохранения энергии: R + А + D = 1. Если R = 1, то А = D = 0. Это означает, что вся падающая лучистая энергия полностью отражается телом. Когда отражение правильное и определяется законами геометрической оптики, тела называются зеркальными, а в случае диффузного отражения – абсолютно белыми. Если А = 1, то R = D = 0. Это означает, что все падающее излучение поглощается телом и такие тела называются абсолютно черными. Если D = 1, то А + R = 0. Это означает, что вся падающая энергия проходит сквозь тело и такие тела называют прозрачными или диатермичными. К ним можно отнести не запыленный сухой воздух, одноатомные и двухатомные газы (азот, кислород, водород). В природе «абсолютных» тел не существует, хотя имеются близкие. Например, моделью абсолютно черного тела может служить отверстие в стенке полого тела (шара), в котором энергия попадающего в него луча полностью поглощается стенками. Нефтяная сажа поглощает до 96 % падающей энергии, а шероховатый лед или иней – до 98 %. Почти все тепловые лучи отражает тщательно отполированная медь. В природе подавляющее большинство твердых тел и жидкостей непрозрачно, для них пропускательная способность D = 0, а сумма поглощательной и отражательной способностей А + R = 1. Эти тела называют серыми или атермичными. Если серое тело хорошо поглощает лучистую энергию, то оно плохо отражает эту энергию, и наоборот. Наиболее интенсивно поглощают энергию твердые тела, слабее – жидкости. Для приближения твердых серых тел к черным их поверхность часто покрывают нефтяной сажей, лаком или краской. Однако поглощательная способность тел в инфракрасном диапазоне излучения определяется не столько цветом, сколько качеством или состоянием (шероховатостью) поверхности. Среда, сквозь которую проходит лучистая энергия, по-разному поглощает и, следовательно, пропускает излучение. Трехатомные газы (углекислый и сернистый газ, водяные пары) пропускают тепловые лучи только в узком диапазоне длин волн. Сухой воздух практически прозрачен для тепловых лучей, однако при наличии в нем влаги, пара (тумана) он становится средой, заметно поглощающей. Поглощение и рассеяние излучения имеют место в запыленных или сажистых газах. Поглощательная и пропускательная способности тел и сред зависят от спектра излучения. Например, кварц прозрачен для световых и ультрафиолетовых лучей, но непрозрачен для тепловых лучей. Каменная соль прозрачна для тепловых лучей и непрозрачна для ультрафиолетовых лучей. Оконное стекло прозрачно только для световых лучей, а для инфракрасных и ультрафиолетовых оно почти не прозрачно. Коллектор солнечной энергии Коллектор солнечной энергии (КСЭ) предназначен для улавливания энергии светового излучения, преобразования в тепловую энергию и передачи промежуточному теплоносителю. Улавливание солнечной энергии в коллекторе основано на способности веществ и материалов, таких как стекло, полимерные пленки, воды, пропускать световые лучи. Солнечная энергия в основном переносится световыми лучами, для которых указанные материалы практически прозрачны. Наибольшее применение имеет плоский коллектор солнечный энергии, представленный на рис. 4. Тепловой поток энергии, подводимой к КСЭ солнечными лучами Qо = qл F, где qл – суммарная солнечная радиация (прямая и рассеянная) на горизонтальную поверхность КСЭ, МДж/м2; F – площадь тепловоспринимающей поверхности коллектора, м2. Рис. 4. Схема коллектора солнечной энергии (КСЭ): 1 – светопрозрачная панель (стекло); 2 – корпус; 3 – теплоизоляция; 4 – трубки для теплоносителя; 5 – лучепоглощающая поверхность (абсорбер) Лучи инфракрасного диапазона излучения (Qот) отражаются от панели 1, а солнечная энергия светового диапазона излучения (Qпр) беспрепятственно проходит через светопрозрачную панель (стекло) 1, прозрачную среду КСЭ и попадают на лучепоглощающую поверхность абсорбера 5. Если учесть, что солнечная энергия в основном переносится световыми лучами, то пропускательная способность D=Qпр/Qо, а количество теплоты, прошедшее через среду КСЭ, Qпр = DQо. Абсорбером называют совокупность лучепоглощающей поверхности 5 и трубок 4, по которым проходит жидкий (вода) или газообразный (воздух) теплоноситель, отводящий теплоту к потребителю. На абсорбере солнечная энергия световых лучей трансформируется в тепловую энергию, которая в большей части передается теплоносителю и в меньшей части отражается внутрь КСЭ. При обратном излучении энергия переносится в основном инфракрасными (тепловыми) лучами Qинф, для которых стекло 1 и полимерные материалы КСЭ непрозрачны, а теплота обратного инфракрасного излучения, отражаясь от панели, остается внутри коллектора. Таким образом, коллектор работает как ловушка солнечной энергии: впускает энергию светового излучения Солнца и не выпускает наружу энергию инфракрасного излучения. Поверхность абсорбера должна иметь как высокую поглощательную способность световой энергии Аабс, так и низкую степень черноты ε абс в диапазоне инфракрасного излучения. Наивысшие значения поглощательной способности имеют поверхности, окрашенные в черный цвет. Для них Аабс доходит до 0, 95. Но эти покрытия шероховаты, и степень их черноты, определяющая интенсивность инфракрасного излучения, велика. Поэтому такой абсорбер, поглощая большую долю падающей на него энергии световых лучей, будет терять и значительное количество теплоты, излучая его в виде инфракрасных лучей. Коэффициенты поглощения солнечной радиации А для отдельных материалов составляют: бетон – 0, 54…0, 65; алюминий чистый – 0, 22; алюминий окисленный – 0, 54; железо кровельное черное – 0, 9; железо эмалированное белое – 0, 32; железо оцинкованное – 0, 68…0, 79; краска масляная (разных цветов) – 0, 52…0, 91. Поглощательная способность абсорбера Аабс = Qабс / Qпр. Количество теплоты, воспринимаемое абсорбером Qабс = Аабс Qпр. Для снижения степени черноты ε абс на поверхность абсорбера наносят селективные покрытия. Селективные покрытия представляют собой тонкие пленки из черного хрома или черного никеля на металлической подложке. Селективные покрытия обладают различными оптическими характеристиками по отношению к световым и инфракрасным лучам. Из-за малой толщины слоя (меньшей, чем длина волны инфракрасных лучей) селективная пленка прозрачна для теплового излучения. В области инфракрасных лучей излучательная способность селективных пленок очень низка, а отражательная способность высока. Поэтому при нанесении селективной пленки на поверхность абсорбера его степень черноты ε абс будет равна степени черноты полированной металлической подложки ε сел. Степень селективности абсорбера с пленкой оценивается отношением Аабс / ε сел. Наилучшие результаты имеют селективные пленки с черным хромом на алюминиевой фольге (Аабс = 0, 964; ε сел = 0, 023) и черным никелем на никелевой подложке (Аабс = 0, 96; ε сел = 0, 11). На внутреннюю поверхность стекол также наносят селективную пленку, обладающую хорошей отражательной способностью по отношению к инфракрасным (тепловым) лучам, излучаемым от абсорбера. Нанесение селективных пленок обеспечивает значительное повышение КПД КСЭ: так, при однослойном остеклении изменение степени селективности от 1 до 12 приводит к увелчению КПД КСЭ от 45 до 60 %. Оптическим КПД КСЭ называется произведение η опт = DАабс. Оптический КПД коллектора показывает, какая часть солнечной энергии, подведенной на панель коллектора, воспринимается поверхностью абсорбера за счет пропускательной (D) способности КСЭ и поглащательной (Аабс) способности абсорбера. По абсорберу проходит жидкий или газообразный теплоноситель, который воспринимает всю лучистую энергию (световую и тепловую) и отводит эту теплоту к потребителю системы теплоснабжения. Количество этой полезной теплоты Qт, отнесенное к единице времени, определяет теплопроизводительность солнечного коллектора, кВт Qт = Gт ст (Т2к − Т1к), где Gт – массовый расход теплоносителя, кг/с; ст – удельная массовая теплоемкость теплоносителя, кДж/(кг·К); Т1к и Т2к – начальная и конечная температуры теплоносителя, °С или К. Однако не вся теплота, поглощенная абсорбером Qабс доходит до теплоносителя. Часть теплоты с наружной поверхности абсорбера за счет конвекции, теплопроводности и излучения отводится к внутренней поверхности стенок коллектора. В стационарном тепловом режиме теплота в этом же количестве проходит через стенки коллектора, а затем теряется в окружающую среду с наружной поверхности КСЭ. Эти явления протекают одновременно, влияют друг на друга, и такое совокупное воздействие носит название сложный теплообмен. Конвекция, например, часто сопровождается тепловым излучением, теплопроводность в пористых телах – конвекцией и излучением в порах, а тепловое излучение – теплопроводностью и конвекцией. В практических расчетах разделение таких сложных процессов на элементарные явления не всегда возможно и целесообразно. Обычно результат совокупного действия отдельных элементарных явлений приписывается одному из них, которое и считается главным, а влияние остальных (второстепенных) явлений сказывается лишь на количественной характеристике основного процесса. Так, например, при распространении теплоты с поверхности абсорбера Fабс к внутренней поверхности стенок коллектора вткачестве основного явления принято считать теплоотдачу конвекцией и излучением, а влияние теплопроводности в среде коллектора учитывается соответственным увеличением значения коэффициента теплоотдачи, либо в среде КСЭ используется понятие кондуктивной теплопроводности. Количественной характеристикой совокупного теплового процесса является суммарный, или общий, коэффициент теплоотдачи α общ = α к + α л, где α к – коэффициент теплоотдачи за счет конвекции и теплопроводности; α л – коэффициент теплоотдачи излучением. Обозначим через Табс – температуру поверхности абсорбера и Тс – температуру среды коллектора. От каждой единицы поверхности абсорбера Fабс теряется теплота путем конвекции: qк = α к(Табс – Тс), и путем теплового излучения: qл = ε пр с0 [(Табс / 100)4 – (Тс / 100)4], где ε пр – приведенная степень черноты системы тел; с0 = 5, 67 Вт/(м2⋅ К4) – коэффициент излучения абсолютно черного тела. Суммируя qк и qл, имеем qобщ = qк + qл = α к (Табс – Тс) + ε пр с0 [(Табс / 100)4 – (Тс / 100)4]. Вынося разность (Табс – Тс) за скобки, получим основное выражения для расчета сложного, или суммарного, теплообмена: qобщ = (α к + α л) (Табс – Тс) = α общ (Табс – Тс). Коэффициент теплоотдачи излучением определяется по формуле α л = ε пр с0⋅ 10− 8(Табс4 – Тс4) / (Табс – Тс) = ε пр с0 θ, где θ – температурный коэффициент. Если стенки КСЭ омываются капельной жидкостью (водой), тогда α л = 0 и α общ = α к. Значение θ зависит только от температур Табс и Тс, а ε пр вычисляется согласно степени черноты системы. Если обозначить (Табс + Тс)/2 = Тт, то при 0, 9 < Табс / Тс < 1, 1 температурный коэффициент θ ≈ 0, 04(Тт/100)3. При таком допущении α л = 0, 04ε пр с0 (Тт / 100)3, а ошибка расчета не превышает 1 %. В случае, если в качестве основного принят процесс теплового излучения, расчетная формула суммарной теплоотдачи будет иметь вид qобщ = (ε кт + ε пр) с0 [(Табс / 100)4 – (Тс / 100)4], а участие в процессе конвективного теплообмена учитывается увеличением приведенной степени черноты системы за счет ε кт = α к / (с0 θ ). Тепловые потери КСЭ могут быть рассчитаны и по формуле, Вт Qп = Qк + Qл = α к F (Тнп – Тв) + ε с0 F [(Тнп / 100)4 – (Тв / 100)4], где α к – коэффициент теплоотдачи конвекцией с поверхности коллектора к окружающему воздуху, Вт/(м2·К); F – площадь наружной теплоотдающей поверхности КСЭ, м2; Тнп – средняя температура наружной поверхностиКСЭ, К; Тв – температура наружного окружающего воздуха, К; ε – степень черноты наружной поверхности КСЭ. Тепловые потери КСЭ могут быть рассчитаны и по формуле, Вт Qп = kFабс (Табс – Тв), где k – эффективный коэффициент теплопередачи от среды в коллекторе к окружающему наружному воздуху, Вт/(м2·К); F – площадь теплоотдающей поверхности абсорбера, м2; Табс – средняя температура наружной поверхности абсорбера, °С или К; Тв – температура наружного окружающего воздуха, °С или К. Возможно и другое решение теплового процесса в КСЭ. Условия движения жидкости в ограниченном пространстве КСЭ зависят от формы, геометрических размеров пространства, рода жидкости и интенсивности теплообмена. Характер движения жидкости при естественной конвекции в прослойках определяется расположением нагретых и холодных поверхностей и расстояниями между ними. В горизонтальных прослойках характер движения жидкости определяется расположением нагретой поверхности: если она сверху – циркуляция отсутствует, а если снизу – чередование восходящих и нисходящих потоков. Циркуляция жидкости в вертикальных прослойках зависит от их толщины δ. При большой толщине δ движение жидкости имеет характер, как вдоль вертикальной поверхности в неограниченном пространстве. При малой толщине δ возникают циркуляционные контуры вследствие взаимных помех восходящих и нисходящих потоков. В шаровых и горизонтальных цилиндрических прослойках циркуляция жидкости зависит от соотношения диаметров, расположения нагретой поверхности. Процесс сложного конвективного теплообмена в прослойках принято рассматривать как элементарное явление теплопроводности, для чего введено понятие эквивалентного коэффициента теплопроводности λ экв=Q/(FΔ Тδ ) и коэффициента конвекции ε к = λ экв /λ ж. Плотность теплового потока (тепловых потерь) от горячей поверхности абсорбера (Табс) к внутренней поверхности корпуса КСЭ (Тк) через жидкостную прослойку толщиной δ с коэффициентом теплопроводности λ ж определяется из выражений qп = λ экв (Табс − Tк )/δ ; λ экв = λ жε к. Для всей области значений критериев Грасгофа и Прандтля (Grf Prf ) и приближенной оценки ε к плоских, цилиндрических и шаровых прослоек ε к = 0, 18(Grf Prf )0, 25, где в качестве определяющей принята средняя температура горячей и холодной стенок прослойки (Табс+Тк)/2, а за определяющий геометрический размер – толщина прослойки δ. Коэффициент λ экв в прослойке иногда называют коэффициентом кондуктивной теплопроводности. Доля любых тепловых потерь КСЭ составляет: qп = Qп / Qо. Эффективность работы абсорбера КСЭ оценивается по формуле Qабс = Qт + Qп или Qт = Qабс − Qп. Эффективность использования солнечной энергии характеризуется КПД коллектора, который показывает, какая доля солнечной энергии Qо, поступившей на коллектор, передается потребителю Qт: η ксэ = Qт / Qо или η ксэ = η опт − qп. Следовательно, для повышения КПД коллектора солнечной энергии η ксэ необходимо улучшать радиационные характеристики абсорбера и снижать тепловые потери КСЭ в окружающую среду. Для этого используют тепловую изоляцию корпуса КСЭ и селективные покрытия, наносимые на лучевоспринимающую поверхность абсорбера. Для теплоизоляции КСЭ боковые поверхности и дно закрывают пенопластом, стекловатой или другим эффективным теплоизоляционным материалом. Остекление КСЭ, помимо основной своей роли – пропуска световых лучей, также играет роль теплоизоляции и может быть одно-, двух- и трехслойным. С ростом числа слоев тепловые потери уменьшаются, но ухудшается и пропускная способность остекления.
|
Последнее изменение этой страницы: 2017-05-05; Просмотров: 702; Нарушение авторского права страницы