Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тепловой эффект химической реакции. Термохимия. Закон Гесса



Все химические процессы сопровождаются тепловыми эффектами.

Тепловым эффектом химической реакции называется теплота, выделяемая или поглощаемая в результате превращения исходных веществ в количествах, соответствующих уравнению химической реакции. При этом единственной работой является работа расширения, а исходные вещества и продукты реакции должны иметь одинаковую температуру.

Независимость теплоты химической реакции от пути процесса при р = const и Т = const (A = pDV) впервые была установлена в 1836 г. русским ученым Г.И. Гессом. Эта закономерность известна как закон Гесса: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.

Закон составляет теоретическую основу термохимии, т.е. раздела химической термодинамики, в котором вычисляются тепловые эффекты различных физико-химических процессов: химических реакций, фазовых переходов, процессов растворения и кристаллизации и т. д.

Следует помнить, что все термохимические расчеты проводятся при стандартных условиях: Т = 298 К (25 0С), р = 101, 3 кПа (1 атм.), например: DН0298 – стандартная энтальпия.

В термохимии уравнение химической реакции записывается с указанием теплового эффекта реакции (энтальпии) и агрегатного состояния веществ. Эти уравнения называют термохимическими уравнениями:

Н2(г) + Cl2(г) = 2HCl(г) 0298 = - 184, 6 кДж.

В термодинамике принято:

- в экзотермических процессах теплота выделяется, для них DН < 0 и DU < 0 (теплосодержание и внутренняя энергия системы уменьшаются);

- в эндотермических процессах теплота поглощается, для них DН > 0 и DU > 0 (теплосодержание и внутренняя энергия системы возрастают).

В термохимических расчетах широко используются три следствия из закона Гесса.

Первое следствие: тепловой эффект прямой реакции равен тепловому эффекту обратной реакции с противоположным знаком: DНпр.= - DНобр.

Второе следствие: тепловой эффект реакции равен разности между суммой теплот (энтальпий) сгорания исходных веществ и суммой теплот (энтальпий) сгорания продуктов реакции с учетом стехиометрических коэффициентов веществ, участвующих в процессе:

р.= S(ni. сг i)исх. - S(ni . сг i )прод.,

где ni – стехиометрический коэффициент для i-того вещества в уравнении реакции, ∆ Нсг i – теплота (энтальпия) сгорания i-того вещества.

Теплота (энтальпия) сгорания – количество теплоты, которое выделяется при полном сгорании одного моля вещества до высших окислов при данных условиях (р, Т). Численные значения теплот сгорания определяются по справочным изданиям.

Третье следствие: тепловой эффект реакции равен разности между суммой теплот (энтальпий) образования продуктов реакции и суммой теплот (энтальпий) образования исходных веществ с учетом стехиометрических коэффициентов веществ, участвующих в процессе:

р.= S(ni . обр. i)прод. - S(ni . обр. i )исх.,

где ni – стехиометрический коэффициент для i-того вещества в уравнении реакции, ∆ Нобр. i – теплота (энтальпия) образования i-того вещества.

Под теплотой (энтальпией) образования понимается тепловой эффект реакции образования 1 моль вещества из простых веществ (измеряется в кДж/моль). Обычно используют стандартные энтальпии образования; их обозначают DН0обр, 298 или DН0f, 298 (часто один из индексов опускают и обозначают, например, DН0298). Стандартные энтальпии простых веществ, устойчивых в стандартных условиях (газообразный кислород, жидкий бром, кристаллический йод, ромбическая сера, графит и т.д.) принимаются равными нулю. Численные значения теплот (энтальпий) образования определяются по справочникам.

Энтропия

Если на систему оказать внешнее воздействие, в системе происходят определенные изменения. Если после снятия этого воздействия система может вернуться в первоначальное состояние, то процесс является обратимым. Если после снятия внешнего воздействия систему и окружающую среду нельзя вернуть в первоначальное состояние, то процесс – необратимый.

Процессы, протекающие без подвода энергии от внешнего источника, называются самопроизвольными. Например: падение камня с высоты, переход тепла от более нагретого тела к менее нагретому, стекание воды по желобу. При этом система из более упорядоченного состояния переходит в состояние менее упорядоченное и более вероятное. Человеческий опыт показал, что самопроизвольные процессы в обратном направлении не могут протекать самопроизвольно, т.е. самопроизвольно камень не полетит вверх, теплота не перейдет от холодного тела к нагретому, а вода не потечет вверх по желобу.

Многие химические процессы также протекают самопроизвольно, например, образование ржавчины на железе, растворение соли в воде и др. Каковы движущие силы и критерии самопроизвольных процессов?

Частицам (молекулам, атомам, ионам) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Так, если, например, баллон с газом (состояние I) соединить с сосудом, то газ из баллона будет распределяться по всему объему сосуда (состояние II). При этом система из более упорядоченного состояния (с меньшим беспорядком) переходит в состояние менее упорядоченное (с большим беспорядком). Количественной мерой беспорядка системы является термодинамическая функция состояния - энтропия (S). Ее численное значение можно определить следующим образом:

S = R . T . lnW, (10)

т.е. S пропорциональна lnW, где W – термодинамическая вероятность состояния системы или число вероятных микросостояний, которыми может быть реализовано данное макросостояние; W > 1.

При переходе системы из более упорядоченного состояния в менее упорядоченное (из состояния I в состояние II) энтропия системы возрастает, т.е. DS = S2 – S1 > 0.

Переход из менее упорядоченного состояния в более упорядоченное ( из состояния II в состояние I) без воздействия извне невозможен. Такой процесс называется несамопроизвольным. Понятно, что в рассматриваемом примере представляется невероятным, чтобы газ сам собой собрался в баллоне. Очевидно, что в этом случае энтропия системы уменьшается (DS = S2 – S1 < 0). Т.е.:

- все процессы, протекающие с уменьшением порядка в расположении частиц, сопровождаются увеличением энтропии, являются самопроизвольными процессами (процессы растворения, плавления, испарения, нагревания);

- все процессы, протекающие с увеличением порядка в расположении частиц, сопровождаются уменьшением энтропии, являются несамопроизвольными процессами (процессы конденсации, кристаллизации, охлаждения).

Таким образом, в изолированной системе самопроизвольные процессы протекают в сторону увеличения энтропии, DS > 0 (II закон термодинамики).

Системы, в которых протекают химические реакции, не являются изолированными, т.к. они сопровождаются тепловым эффектом, т.е. системы обмениваются энергией с окружающей средой. В неизолированных системах возможны процессы, в которых энтропия понижается. Например, при отводе тепла в окружающую среду расплав или стекло могут закристаллизоваться, а пар сконденсироваться (т.е. DS < 0).

В отличие от энтальпии, для любого вещества абсолютное значение энтропии можно вычислить либо определить экспериментальным путем. Энтропии веществ принято относить к стандартным условиям: Т = 298 К; Р = 101, 3 КПа. Обозначают S0298 и называют стандартной энтропией (численное значение стандартной энтропии определяется по справочным изданиям). Энтропия вещества измеряется в Дж/моль.К.

Значениями энтропии веществ пользуются для определения изменения энтропии системы в результате соответствующих реакций. Например для реакции, записанной в общем виде:

аА +вВ + … = dD + eE + …

изменение энтропии выразится:

DS = (dSD +eSE + …) – (aSA + bSB + …) = S(ni ·Si)прод. - S(ni · Si)исх. (11)

Энтропия системы измеряется в Дж/К.

Свободная энергия Гиббса

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (12)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (13)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

- если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

- если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

- если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DGобр., измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG0обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG0обр.298 веществ приводятся в справочниках.

Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG0298 = S(niDG )пр. - S(niD G )исх.. (14)


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 345; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь