Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема: Направления сельскохозяйственной биотехнологии в растениеводстве



План лекции:

1. Биотехнология и сельское хозяйство

2. Биотехнология и растениеводство

3. Культура клеток

Культурные растения стра­дают от сорняков, грызунов, насекомых-вредителей, нематод, фитопатогенных грибов, бактерий, вирусов, неблагоприятных погодных и климатических условий. Перечисленные факто­ры наряду с почвенной эрозией и градом значительно снижают урожайность сельскохозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает коло­радский жук, а также гриб Phytophtora — возбудитель ранней гнили (фитофтороза) картофеля. Кукуруза подвержена опустоши­тельным «набегам» южной листовой гнили, ущерб от которой в США в 1970 г. был оценен в 1 млрд. долларов.

В последние годы большое внимание уделяют вирусным за­болеваниям растений. Наряду с болезнями, оставляющими види­мые следы на культурных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие уро­жайность сельскохозяйственных культур и ведущие к их вырож­дению.

Биотехнологические пути защиты растений от рассмотренных вредоносных агентов включают: 1) выведение сортов растений, устойчивых к неблагоприятным факторам; 2) химические сред­ства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсектициды), нематодами (нематоциды), фитопатогенными грибами (фунгициды), бактериями, ви­русами; 3) биологические средства борьбы с вредителями, ис­пользование их естественных врагов и паразитов, а также ток­сических продуктов, образуемых живыми организмами.

Наряду с защитой растений ставится задача повышения про­дуктивности сельскохозяйственных культур, их пищевой (кормо­вой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Раз­работки нацелены на повышение энергетической эффективности различных процессов в растительных тканях, начиная от погло­щения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.

Выведение новых сор­тов растений. Традицион­ные подходы к выведению новых сортов растений — это селекция на основе гибридизации, спонтан­ных и индуцированных мутаций. Методы селекции не столь отда­ленного будущего включают гене­тическую и клеточную инженерию.

Генетическую инженерию пред­лагают использовать для выведе­ния азотфиксирующих растений. В природных услови­ях азотфиксирующие клубенько­вые бактерии, представители рода Rhizobium, вступают в симбиоз с бобовыми. Комплекс генов азотфиксации (nif) из этих или иных бактерий предлагают вклю­чить в геном злаковых культур. Трудности связаны с поиском подходящего вектора, поскольку широко используемые для подоб­ных целей Agrobacterium с плазмидами Ti и Ri не заселяют злаки. Планируют модификацию генома Agrobacterium, чтобы бакте­рия могла вступать в симбиоз со злаками и передавать им гене­тическую информацию. Другим решением проблемы могла бы быть трансформация растительных протопластов посредством ДНК. К компетенции клеточной инженерии относят создание но­вых азотфиксирующих симбиотических ассоциаций «растение — микроорганизм».

В настоящее время выделены и клонированы гены sym, от­вечающие за установление симбиотических отношений между клубеньковыми азотфиксаторами и растением-хозяином. Путем переноса этих генов в свободноживущие азотфиксирующие бак­терии (Klebsiella, Azotobacter) представляется возможным за­ставить их вступить в симбиоз с ценными сельскохозяйственными культурами. Методами генетической инженерии предполагают также повысить уровень обогащения почвы азотом, амплифици-руя гены азотфиксации у Klebsiella и Azotobacter.

Разрабатываются подходы к межвидовому переносу генов asm, обусловливающих устойчивость растений к нехватке влаги, жаре, холоду, засоленности почвы. Перспективы повышения эф­фективности биоконверсии энергии света связаны с модифика­цией генов, отвечающих за световые и темновые стадии этого процесса, в первую очередь генов cfx, регулирующих фиксацию СО2 растением. В этой связи представляют большой интерес

разработки по межвидовому переносу генов, кодирующих хлоро­филл а/b-связывающий белок и малую субъединицу рибулозо-бис-фосфаткарбоксилазы — ключевого фермента в фотосинтети­ческой фиксации СО2.

Гены устойчивости к некоторым гербицидам, выделенные из бактерий и дрожжей, были успешно перенесены в растения таба­ка. Разведение устойчивых к гербицидам растений открывает возможность их применения для уничтоже­ния сорняков непосредственно на угодьях, занятых сельскохозяй­ственными культурами. Проблема состоит, однако, в том, что массивные дозы гербицидов могут оказаться вредными для при­родных экосистем.

Некоторые культурные растения сильно страдают от нематод. Обсуждается проект введения в растения новых генов, обуслов­ливающих биосинтез и выделение нематоцидов корневыми клет­ками. Важно, чтобы эти нематоциды не проявляли токсичности по отношению к полезной прикорневой микрофлоре. Возможно также создание почвенных ассоциаций «растение — бактерия» или «растение — гриб (микориза)» так, чтобы бактериальный (грибной) компонент ассоциации отвечал за выделение немато­цидов.

Важное место в выведении новых сортов растений занимает метод культивирования растительных клеток in vitro.Регенери­руемая из таких клеток «молодая поросль» состоит из идентич­ных по генофонду экземпляров, сохраняющих ценные качества избранного клеточного клона. В Австралии из культивируемых in vitro клеточных клонов выращивают красные камедные де­ревья (австралийские эвкалипты), отличающиеся способностью расти на засоленных почвах. Предполагается, что корни этих растений будут выкачивать воду из таких почв и тем самым по­нижать уровень грунтовых вод. Это приведет к снижению засо­ленности поверхностных слоев почвы в результате переноса мине­ральных солей в более глубокие слои с потоками дождевой воды. В Малайзии из клеточного клона получена масличная пальма с повышенной устойчивостью к фитопатогенам и увеличенной способностью к образованию масла (прирост на 20—30%). Клонирование клеток с последующим их скринингом и регенерацией растений из отобранных клонов рассматривают как важный метод сохранения и улучшения древесных пород умеренных широт, в частности хвойных деревьев. Растения-регенеранты, выращенные из клеток или тканей меристемы, используют ныне для разведения спаржи, земляники, брюссельской и цветной капусты, гвоздик, папорот­ников, персиков, ананасов, бананов.

С клонированием клеток связывают надежды на устранение вирусных заболеваний растений. Разработаны методы, позволя­ющие получать регенеранты из тканей верхушечных почек расте­ний. В дальнейшем среди регенерированных растений проводят отбор особей, выращенных из незараженных клеток, и выбраковку больных растений. Раннее выявление вирусного заболевания, необходимое для подобной выбраковки, может быть осуществ­лено методами иммунодиагностики, с использованием моноклональных антител или методом ДНК/РНК-проб. Предпосылкой для этого является получение очищенных препаратов соответ­ствующих вирусов или их структурных компонентов.

Клонирование клеток — перспективный метод получения не только новых сортов, но и промышленно важных продуктов. При правильном подборе условий культивирования, в частности при оптимальном соотношении фитогормонов, изолированные клетки более продуктивны, чем целые растения. Иммобилизация растительных клеток или протопластов нередко ведет к повыше­нию их синтетической активности. Табл. 6 включает биотехно­логические процессы с использованием культур растительных клеток, наиболее перспективные для промышленного внед­рения.

Коммерческое значение в основном имеет промышленное про­изводство шиконина. Применение растительных клеток, которые являются высокоэффективными продуцентами алкалоидов, терпе­нов, различных пигментов и масел, пищевых ароматических до­бавок (земляничной, виноградной, ванильной, томатной, сельде­рейной, спаржевой) наталкивается на определенные трудности, связанные с дороговизной используемых технологий, низким выходом целевых продуктов, длительностью производственного процесса.

Таким образом, биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.

 

Примеры клеточных культур — высокоэффективных проду­центов ценных соединений (по О. Sahai, M. Knuth, 1985. К. Hahlbrock. 1986)

 

Вид растения Целевой продукт Предполагаемое применение
Lithospermum erithrorhizon(воробейник) Шиконин и его производные Красный пигмент, используемый в косметике как «биологическая губная помада», антибактериаль­ный агент, используемый при ле­чении ран, ожогов, геморроя
Nicotiana tabacum(та­бак) Убихинон- 10 Важный компонент дыхательной и фотосинтетической цепей пере­носа электронов, применяемый как витамин и в аналитических целях
To же Глутатион Участник многих окислительно-восстановительных реакций в клет­ке, приравнивается к витамину
Morinda citrifolia Антрахиноны Сырье для лакокрасочной про­мышленности
Coleus blumei Розмариновая кислота Жаропонижающее средство, проходящее клинические испытания
Berberis stolonifera (барбарис) Ятрорризин Спазмолитическое лекарственное средство

 

Биодеградация пестицидов. Пестициды облада­ют мощным, но недостаточно избирательным действием. Так, гербициды, смываясь дождевыми потоками или почвенными во­дами на посевные площади, наносят ущерб сельскохозяйствен­ным культурам. Помимо этого, некоторые пестициды длительно сохраняются в почве, что тоже приводит к потерям урожая. Воз­можны разные подходы к решению проблемы: 1) усовершенство­вание технологии применения пестицидов, что не входит в ком­петенцию биотехнологии; 2) выведение растений, устойчивых к пестицидам; биодеградация пестицидов в почве.

К разрушению многих пестицидов способна микрофлора поч­вы. Методами генетической инженерии сконструированы штаммы микроорганизмов с повышенной эффективностью биодеградации ядохимикатов, в частности штамм Pseudomonas ceparia, разру­шающий 2, 4, 5-трихлорфеноксиацетат. Устойчивость того или иного пестицида в почве меняется при добавлении его в сочета­нии с другим пестицидом. Так, устойчивость гербицида хлорпро-фама увеличивается при его внесении совместно с инсектицидами из группы метилкарбаматов. Оказалось, что метилкарбаматы ингибируют микробные ферменты, катализирующие гидролиз хлорпрофама.

Микробная трансформация пестицидов имеет и оборотную сторону. Во-первых, быстрая деградация пестицидов сводит на нет их полезный эффект. Во-вторых, в результате микробного превращения могут образоваться продукты, сильно ядовитые для растений. При использовании гербицида тиобенкарба в Япо­нии наблюдали подавление роста и развития риса. Установлено, что подавляет не сам гербицид, а его дехлорированное производ­ное S-бензил-N, N-диэтилтиокарбамат. Чтобы предотвратить об­разование такого производного, тиобенкарб применяют в ком­бинации с метоксифеном, ингибитором дехлорирующего фермен­та микроорганизмов.

Биологическая защита растений от вреди­телей и патогенов. Из широкого спектра биологических средств защиты растений ограничимся рассмотрением средств борьбы с насекомыми-вредителями и патогенными микроорга­низмами. Именно в этих областях имеются наибольшие перспек­тивы.

К традиционным биологическим средствам, направленным против насекомых, принадлежат хищные насекомые. В последние годы арсенал «оружия» инсектицидного действия пополнен гриба­ми, бактериями, вирусами, патогенными для насекомых (энтомо-патогенными). Многие виды насекомых-вредителей (тля, коло­радский жук, яблоневая плодожорка, озимая совка и др.) восприимчивы к заболеванию, вызываемому грибом Beauveria bussiana. Препарат боверин из лиофильно высушенных конидий гри­ба сохраняет энтомопатогенность в течение года после обработки почвы или растений. Препарат пецилолин из гриба Poecilomyces fumoso-roseus применяют для борьбы с вредителями кустарни­ков, например смородины.

Важным источником бактериальных энтомопатогенных препа­ратов служит Bacillus thuringiensis. Эти препараты обладают высокой устойчивостью и патогенны для нескольких сотен видов насекомых-вредителей, в том числе для листогрызущих насеко­мых — вредителей яблонь, винограда, капусты, лесных деревьев. Гены, отвечающие за синтез одного из токсинов В.thuringiensis, были изолированы и перенесены в растения табака. Необходимо, чтобы такие «энтомопатогенные» растения не содержали веществ, токсичных для человека и животных.

Вирусные препараты отличаются высокой специфичностью действия, длительным (до 10—15 лет) сохранением активности, устойчивостью к колебаниям температуры и влажности. Из многих сотен известных энтомопатогенных вирусов наибольшее примене­ние находят вирусы ядерного полиэдроза, обладающие высокой эффективностью действия на насекомых-вредителей. Насекомых выращивают в искусственных условиях, заражают вирусом, из гомогенатов погибших насекомых готовят препараты. При­меняют отечественные препараты вирин-ЭКС (против капустной совки), вирин-ЭНШ (против непарного шелкопряда). В послед­ние годы для культивирования вирусов широко применяю; культуры клеток насекомых.

Комбинация из нескольких биологических средств нередко действует на вредителей более эффективно, чем каждый в от дельности. Смертность соснового шелкопряда резко возрастает, если вирус цитоплазматического полиэдроза применяют в сочета­нии с препаратами из Вас. thuringiensis. Эффективна комбинация биологических и химических средств защиты растений от насекомых.

Среди новых средств защиты растений — вещества биогенного происхождения, ингибирующие откладку яиц насекомыми или стимулирующие активность естественных врагов насекомых вредителей: хищников, паразитов.

Разнообразны средства защиты растений от фитопатогенных микроорганизмов.

1. Антибиотики. Примерами могут служить триходермин и трихотецин, продуцируемые грибами Trichoderma sp. иTrichotecium roseum. Эти антибиотики используются для борьбы с корневыми гнилями овощных, зерновых и технических культур.

2. Фитоалексины, естественные растительные агенты, инактивирующие микробных возбудителей заболеваний. Эти соединения, синтезируемые в тканях растений в ответ на внедрение фитопатогенов, могут служить высокоспецифичными замените-

лями пестицидов. Фитоалексин перца успешно применяли при фитофторозе. Могут быть использованы также вещества, сти­мулирующие синтез фитоалексинов в растительных тканях.

3. Использование микробов-антагонистов, вытесняющих пато­генный вид и подавляющих его развитие.

4. Иммунизация и вакцинация растений. Вакцинные препара­ты стремятся вводить непосредственно в прорастающие семена.

5. Введение в ткани растений специфичного агента (d-фактора), снижающего жизнеспособность возбудителя.

Биологические средства — важная составная часть комплекс­ной программы защиты растений. Эта программа предусматри­вает проведение защитных мероприятий агротехнического, биоло­гического и химического плана наряду с использованием устой­чивых сортов растений. Задачей комплексной программы явля­ется поддержание численности вредителей растений на экологи­чески сбалансированном уровне, не наносящем ощутимого вреда культурным растениям.

Биологические удобрения. Биологические (бакте­риальные) удобрения применяют для обогащения почвы связан­ным азотом. Большое распространение получили препараты нитрагин и азотобактерин — клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфо-бактерин из Bacillus megaterium превращает сложные органиче­ские соединения фосфора в простые, легко усвояемые расте­ниями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.

Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадле­жат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в послед­ние годы биорегуляторов относят пептиды, имеются перспек­тивы их применения в сельском хозяйстве.


Лекция № 3


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 894; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь