Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Колонны (железобетон). Их типы, конструктивные особенности армирования



Колонны для зданий без мостовых кранов и зданий с подвесными кранами. Основными особенностями этих колонн являются:

· форма поперечного сечения: квадрат, прямоугольник, реже круг, кольцо;

· сечение постоянное по высоте колонны;

· сечение сплошное;

· средние колонны могут иметь вверху уширения (уширенный оголовок), т.к. на них опираются конструкции покрытия с двух сторон;

· высота колонн среднего ряда, при наличии в здании подстропильных конструкции, на 600 (700) мм меньше высоты колонн крайних рядов, т.е. на высоту опорной части подстропильной конструкции.

Сплошные колонны применяются в зданиях, имеющих высоту этажа до 9, 6 м, пролеты до 24 м, шаг 6 м. В бескрановых зданиях с высотой этажа 3, 6…7, 2 м шаг крайних и средних колонн принимают 6 м, при высоте 4, 8…9, 6 м – шаг средних колонн равен 12 м.

Заделка колонн ниже нулевой отметки в зданиях без мостовых кранов равна 900 мм.

Колонны для зданий с мостовыми кранами. Для этих колонн характерно наличие консолей - специальных выступов, на которые укладывают подкрановые балки. Колонны крайних рядов - одноконсольные, колонны средних рядов двухконсольные.

Основными особенностями этих колонн являются:

· форма поперечного сечения: прямоугольник;

· сечение сплошное;

· подкрановая ветвьколонны имеет большие размеры поперечного сечения;

· надкрановая ветвьколонны имеет меньшие размеры поперечного сечения.

Применяют в зданиях высотой этажа до 10, 8 м с пролетами 18 и 24 м при шаге колонн 6 и 12 м, оборудованных мостовыми кранами грузоподъемностью до 20 т.

Заделка колонн, имеющих консоли, ниже нулевой отметки равна 1, 0 м.

Двухветвевые колонны в нижней подкрановой части имеют две ветви, соединенные распорками. Просветы между ветвями используют для пропуска санитарно-технических и технологических коммуникаций. По расходу материала эти колонны экономичнее колонн сплошного сечения и применяются при высоте цеха свыше 10, 8 м в зданиях с пролетом 18…30м и шагом 6 и 12 м, при крановых нагрузках до 50 т. Двухветвевые колонны могут использоваться для бескрановых зданий, могут быть одно- и двухконсольными.

Заделка двухветвевых колонн в фундамент – 1, 05 и 1, 35 м.

Центрефугированные колонны кольцевого сечения используются как для крановых зданий, оборудованных кранами грузоподъемность до 30 т, как и для бескрановых. Их выполняют из высокопрочных материалов и бетонов высоких марок.

Применение для промышленных зданий типовых конструкций требует строго определенного их расположения. Это значит, что все колонны на плане здания должны быть расположены строго определенно по отношению к разбивочным осям.

Для правильного армирования, как мы уже отметили, нужен качественный расчет и правильно составленный чертеж или схема.

Пример армирования каркасного здания на колоннах с двумя консолями

В расчет закладывается и такой интересный показатель, как процент армирования или заполнения арматурой. Процент армирования указывает на удельный вес или долю арматурного каркаса в общей схеме конструкции.

Существует максимальный и минимальный процент армирования железобетонных опор. Минимальный процент – грань, ниже которой нельзя заходить. Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной.

Максимальный процент – предел, после которого конструкция из железобетонной превращается в сталежелезобетонную. Превышать максимальный процент тоже нежелательно, особенно в гражданском строительстве.

Показатель, минимального процента армирования колонны равняется 3%. Показатель максимального процента армирования равняется 6%. Однако расчет показывает, что для зданий небольших хватит и 5%, а в некоторых случаях и 4% в удельном весе

37. Бетон. Структура, прочностные характеристики

Структура.

Структура оказывает решающее влияние на прочностные и деформативные характеристики бетона. Она грубо неоднородна и зависит от многочисленных факторов: зернового состава крупных и мелких заполнителей, объемной концентрации цементного камня, водоцементного отношения, способов уплотнения, условий твердения, степени гидратации цементного камня и др.

Структура бетона формируется в виде пространственной решетки из цементного камня, заполненной зернами крупных и мелких заполнителей и пронизанной многочисленными микропорами и капиллярами, содержащими химически несвязанную воду, водяные пары и воздух. Поэтому бетон представляет собой капиллярно-пористый каменный материал, в котором нарушена сплошность и присутствуют все три фазы - твердая, жидкая и газообразная.

Структура цементного камня в бетоне также сложна и неоднородна. Цементный камень состоит из упругого кристаллического состава и наполняющей его вязкой массы - геля. Сочетание упругой и вязкой структурных составляющих цементного камня наделяет бетон свойствами упругопластично-ползучего тела. Эти свойства проявляются в поведении бетона под нагрузкой и в его взаимодействии с внешней средой. Для гидратации зерен клинкера и затвердения цементного камня в бетоне достаточно В/Ц не более 0, 2. Для лучшей удобоукладываемости бетонной смесиВ/Ц увеличивают до 0, 5...0, 6. Излишек воды испаряется и образует в цементном камне многочисленные поры и капилляры, что снижает прочность бетона и увеличивает его деформативность. Общий объем пор в цементном камне при нормальных условиях твердения составляет 25...40% от объема цементного камня. Размеры их весьма малы: 60...80% объема пор приходится на долю капилляров с радиусом до 1 мкм (104 см). С уменьшением В/Ц пористость цементного камня уменьшается и прочность бетона увеличивается. Поэтому на предприятиях сборного железобетона применяют преимущественно жесткие бетонные смеси (В/Ц = 0, 3...0, 4). Бетоны из жестких смесей обладают меньшей деформативностью, требуют меньшего расхода цемента.

Теории прочности (максимальных нормальных напряжений, максимальных касательных напряжений и др.), предложенные для других материалов, к бетону неприменимы. Прочностные и деформативные характеристики бетона в зависимости от его структуры устанавливают экспериментальным путем.

 

Кубиковая прочность. В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику (эталон) прочностных и деформативных свойств бетона принята его прочность на осевое сжатие. Все другие прочностные характеристики (на растяжение, местное сжатие и др.) и модуль деформаций зависят от прочности бетона на осевое сжатие и определяются по эмпирическим формулам с помощью экспериментальных коэффициентов. Наиболее простым и надежным способом оценки прочности бетона в реальных конструкциях является раздавливание на прессе кубов бетона, изготовленных в тех же условиях, что и реальные конструкции. За стандартные лабораторные образцы принимают кубы размером 15 х 15 х 15 см; испытывают их при температуре (20 4: 2) °С через 28 дн твердения в нормальных условиях (температуре воздуха 15...20°С и относительной влажности 90-100%).

Призменная прочность. Под призменной прочностью понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы к размеру стороны квадрата, равном 4. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. В реальных конструкциях напряженное состояние бетона приближается к напряженному состоянию призм. Поэтому для расчета конструкций на осевое сжатие принята призменная прочность бетона, ее величина имеет максимальное значение при мгновенном загружении. При таком соотношении Н/b влияние опорных плит пресса в средней части призмы (участок разрушения), а также гибкости бетонного образца практически не сказывается. При этом имеется в виду, что эталонные призмы набирали прочность в нормальных условиях в течение 28 дней и что условия загружения соответствуют требованиям ГОСТа.

Призменная прочность равняется примерно 0, 75 кубиковой прочности для класса бетона В25 и выше и 0, 8 для класса бетона ниже В25.

 

Прочность при срезе и скалывании. Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы, например F/2 (рис. 18, а).

Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий Железобетонные конструкции редко работают на срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание - действием поперечных сил. Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию - при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.

 

Прочность при длительном действии нагрузки. Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения. При длительном действии нагрузки бетонный образец разрушается при напряжениях меньших, чем при кратковременной нагрузке Это обусловливается влиянием развивающихся значительных неупругих деформаций и изменением структуры бетона и зависит от режима нагружения, начальной прочности и возраста образцов.

Длительное сопротивление может составлять 90% кратковременного.

 

Прочность при многократном действии нагрузки. Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках (предел выносливости бетона) понимают напряжение, при котором количество циклов, необходимых для разрушения образца, составляет не менее 106. Установлено, что предел выносливости бетона уменьшается с уменьшением коэффициента асимметрии цикла. Предел выносливости бетона определяют посредством умножения временных сопротивлений бетона на коэффициент условий работы бетона.

Предел выносливости связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения выше границы трещинообразования, то при большом количестве циклов наступает его разрушение.

Длительное сопротивление материалов и их пределы выносливости в зависимости от режима нагружения, нелинейности деформирования, ползучести, возраста, начальной прочности могут быть рассчитаны по методике В. М. Бондаренко.

 


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 668; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь