![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Общие принципы выполнения реле
В схемах релейной защиты и электрической автоматики применяются электромеханические реле, реле на полупроводниковых приборах (диодах и транзисторах) и реле с использованием насыщающихся магнитных систем. Значительное распространение имеют электромеханические реле. Однако наличие таких недостатков электромеханических реле, как большие размеры, значительное потребление мощности от трансформаторов тока и напряжения, трудности в обеспечении надежной работы контактов побудили к поискам более совершенных принципов выполнения реле. Новые принципы исполнения реле с помощью полупроводниковых приборов позволяют существенно улучшить параметры и характеристики реле и перейти полностью или частично на бесконтактные схемы защит. Помимо реле, реагирующих па электрические величины, для защиты электрических машин и аппаратов применяются реле, реагирующие на неэлектрические величины, косвенным образом характеризующие появления повреждений пли ненормальных режимов в них. Например, имеются реле, реагирующие на появления газов или повышение давления в кожухах маслонаполненных трансформаторов Реле, реагирующие на электрические величины, можно подразделить на три группы: 1) реле, реагирующие на одну электрическую величину: ток или напряжение; 2) реле, реагирующие на две электрические величины: ток и напряжение сети или два напряжения, каждое из которых является линейной функцией тока и напряжения сети; 3) реле, реагирующие на три или больше электрические величины, например: три тока и три напряжения сети, или несколько напряжений, представляющих линейные функции токов и напряжения сети. К первой группе относятся реле тока и реле напряжения. Ко второй принадлежат однофазные реле: мощности, сопротивления и некоторые другие. К третьей относятся трехфазные реле мощности, многофазные реле сопротивления и другие устройства. Трансформаторы тока являются очень важным элементом релейной защиты. Они питают цепи защиты током сети и выполняют роль датчика, через который поступает информация к измерительным органам устройств релейной защиты. От точности этой информации зависит надежная и правильная работа релейной защиты. Поэтому основным требованием к трансформаторам тока является точность трансформации с погрешностями, не превышающими допустимых значений. Чрезмерно большие погрешности могут вызвать неправильные действия устройств релейной защиты. Поэтому уменьшение погрешности трансформаторов тока является очень важной задачей, она сводится к уменьшению тока намагничивания трансформаторов тока. Для обеспечения правильной работы большинства устройств релейной защиты погрешность трансформаторов тока не должна превышать по току Питание устройств релейной защиты током сети производится по типовым схемам соединений трансформаторов тока и обмоток реле. Поведение и работа реле в каждой из этих схем зависят от характера распределения токов в ее вторичных цепях в нормальных и аварийных условиях. Для каждой схемы соединений можно определить отношение тока в реле
Коэффициент схемы учитывается при расчете уставок и оценке чувствительности защиты. Основные типовые схемы: 1) схема соединения трансформаторов тока и обмоток реле в полную звезду; 2) схема соединения трансформаторов тока и обмоток реле в неполную звезду; 3) схема соединения трансформаторов тока в треугольник, а обмоток реле в звезду; 4) схема соединении с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз; 5) схема соединения трансформаторов тока в фильтр токов нулевой последовательности. В ОСП «НЧЭС» применяется схема соединения трансформаторов тока и обмоток реле в неполную звезду.
Рис. 2. Схема соединений трансформаторов тока и обмоток реле в неполную звезду.
Трансформаторы тока устанавливаются в двух фазах. В реле I и III проходят токи соответствующих фаз
а в обратном проводе ток равен их геометрической сумме:
С учетом векторной диаграммы Ток в обратном проводе при двухфазных к. з. между фазами А и С, в которых установлены трансформаторы тока, с учетом, что В случае однофазного к. з. фаз (А или С), в которых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к. з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды, реагирует не на все случаи однофазного к. з. и поэтому применяется только для защит, действующих при междуфазных повреждениях. Коэффициент схемы
|
Последнее изменение этой страницы: 2017-05-05; Просмотров: 472; Нарушение авторского права страницы