Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дисперсия света. Поглощение (абсорбция) света.



Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ ) света или зависимость фазовой скорости световых волн от их частоты.

Дисперсия света представляется в виде зависимости:

или .

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 17.25). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 17.26) под углом .

Рис. 17.25 Рис. 17.26

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

.

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

  ,   17-22

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (17-22) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Рис. 17.27

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.

Из рис. 17.27 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.

Нормальная и аномальная дисперсия. Итак, дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Эта зависимость не линейная и не монотонная. Области значения ν, в которых

  (или )    

соответствуют нормальной дисперсии света (с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров.

Дисперсия называется аномальной, если

  (или ),    

т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.

Зависимости n от ν и λ показаны на рис. 17.28 и 17.29.

Рис. 17.28. Рис. 17.29

В зависимости от характера дисперсии групповая скорость u в веществе может быть как больше, так и меньше фазовой скорости υ (в недиспергирующей среде ).

Групповая скорость u связана с циклической частотой ω и волновым числом k соотношением: , где , . Тогда

. Отсюда можно записать:

  .    

Таким образом, при нормальной дисперсии u < υ и .

При аномальной дисперсииu > υ, и, в частности, если , то u > c. Этот результат не противоречит специальной теории относительности. Понятие групповой скорости правильно описывает распространение только такого сигнала (волнового пакета), форма которого не изменяется при перемещении сигнала в среде. (Строго говоря, это условие выполняется только для вакуума, т.е. в недиспергирующей среде). В области частот, соответствующих аномальной дисперсии, групповая скорость не совпадает со скоростью сигнала, так как вследствие значительной дисперсии форма сигнала так быстро изменяется, что не имеет смысла говорить о групповой скорости Поглощение (абсорбция) света. Поглощением ( абсорбцией ) света называется явление потери энергии световой волной, проходящей через вещество.

Свет поглощается в тех случаях, когда проходящая волна затрачивает энергию на различные процессы. Среди них: преобразование энергии волны во внутреннюю энергию – при нагревании вещества; затраты энергии на вторичное излучение в другом диапазоне частот (фотолюминесценция); затраты энергии на ионизацию – при фотохимических реакциях и т.п. При поглощении света колебания затухают и амплитуда электрической составляющей уменьшается по мере распространения волны. Для плоской волны, распространяющейся вдоль оси x, имеем

.

Здесь E(x) – амплитудное значение напряженности электрического поля волны в точках с координатой x; – амплитуда в точке с координатой x = 0; t – время, за которое волна распространилась на расстояние, равное x; β – коэффициент затухания колебаний; коэффициент поглощения, зависящий от химической природы среды и от длины волны проходящего света.

Интенсивность волны будет изменяться по закону Бугера (П. Бугер (1698 – 1758) – французский ученый):

,

где – интенсивность волны на входе в среду.

При , . Следовательно, коэффициент поглощения – физическая величина, численно равная обратному значению толщины слоя вещества, в котором интенсивность волны убывает в е = 2, 72 раз.

Зависимость коэффициента поглощения от длины волны определяет спектр поглощения материала. В веществе (например в газе) может присутствовать несколько сортов частиц, участвующих в колебаниях под действием распространяющейся электромагнитной волны. Если эти частицы слабо взаимодействуют, то коэффициент поглощения мал для широкого спектра частот, и лишь в узких областях он резко возрастает (рис. 17.30, а).

а б

Рис. 17.30

Эти области соответствуют частотам собственных колебаний оптических электронов в атомах разных видов. Спектр поглощения таких веществ линейчатый и представляет собою темные полосы на радужной окраске спектра, если это видимая область. При увеличении давления газа полосы поглощения уширяются. В жидком состоянии они сливаются, и спектр поглощения принимает вид, показанный на рис. 17.30, б. Причиной уширения является усиление связи атомов (молекул) в среде.

Коэффициент поглощения, зависящий от длины волны λ (или частоты ω ), для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения, и лишь для очень узких спектральных областей (примерно м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно м).

Коэффициент поглощения для диэлектриков невелик (примерно ), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда α резко возрастает и наблюдаются сравнительно широкие полосы поглощения (примерно м), т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно ), и поэтому металлы практически непрозрачны для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис. 17.31 представлена типичная зависимость коэффициента поглощения α от частоты света ν и зависимость показателя преломления n от ν в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с увеличением ν ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Рис. 17.31

Зависимостью коэффициента поглощения от частоты (длины волны) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей; пленки из пластмасс, содержащие красители; растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий.

С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле.

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

 

Лекция №18

Квантовая природа света и фотоэффект. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Масса и импульс фотона. Давление света. Эффект Комптона.


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 504; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь