Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Типы линий связи локальных сетейСтр 1 из 8Следующая ⇒
Компьютерная сеть (вычислительная сеть, сеть передачи данных) - система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и пр.). Для передачи информации могут быть использованы различные физические явления – различные виды электрических сигналов или электромагнитного излучения. Мэйнфрейм - высокопроизводительный компьютер общего назначения со значительным объемом оперативной и внешней памяти, предназначенный для выполнения интенсивных вычислительных работ. C мэнфреймом работают множество пользователей, каждый из которых располагает лишь терминалом, лишенным собственных вычислительных мощностей. Компьютерный терминал - устройство ввода/вывода, рабочее место на многопользовательских ЭВМ, монитор с клавиатурой. Примеры терминальных устройств: консоль, терминальный сервер. Вычислительная мощность была централизованной, функции ввода и вывода данных стали распределёнными. Эту модель взаимодействия называют «терминал-хост». Хост - сервер, подключенный к локальной или глобальной сети. Центральный компьютер должен работать под управлением операционной системы, поддерживающей такое взаимодействие, которое называется централизованным вычислением. Терминалы могли располагаться не только на территории вычислительного центра, но и быть рассредоточены по значительной территории предприятия. Это явилось прообразом первых локальных вычислительных сетей (ЛВС). Локальная вычислительная сеть (Local Area Network, LAN ) - компьютерная сеть, покрывающая относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). В 1969 году Министерство обороны США посчитало, что на случай войны Америке нужна надёжная система передачи информации. Агентство передовых исследовательских проектов (ARPA) предложило разработать для этого компьютерную сеть. Калифорнийскому университету в Лос-Анджелесе, Стэндфордскому исследовательскому центру, Университету штата Юта и Университету штата Калифорния в Санта-Барбаре. Первое испытание технологии произошло 29 октября 1969 года. Сеть состояла из двух терминалов, первый из которых находился в Калифорнийском университете, а второй на расстоянии 600 км от него — в Стэндфордском университете. Компьютерная сеть была названа ARPANET. В 1973 году к сети ARPANET были подключены первые иностранные организации из Великобритании и Норвегии, сеть стала международной. В 1980 году было предложено связать вместе ARPANET и CSnet (Computer Science Research Network) через шлюз с использованием протоколов TCP/IP, чтобы все подмножества сетей CSnet располагали доступом к шлюзу в ARPANET. Это событие, приведшее к соглашению относительно способа межсетевого общения между содружеством независимых вычислительных сетей, можно считать появлением Интернета в современном его понимании. В середине 80-х годов положение дел в локальных сетях стало меняться. Утвердились стандартные технологии объединения компьютеров в сеть — Ethernet, Arcnet, Token Ring, Token Bus, несколько позже — FDDI. Стандартные сетевые технологии упростили процесс создания ЛВС. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из сетевых операционных систем. После этого сеть начинала работать, и последующее присоединение каждого нового компьютера не вызывало никаких проблем. Сетевая плата (сетевой адаптер, Ethernet-адаптер, NIC) - периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети. Компьютерные сети могут работать в различных режимах: обмена данными между абонентскими системами, запроса и выдачи информации, сбора информации, пакетной обработки данных по запросам пользователей с удаленных терминалов, в диалоговых режимах. Компьютерные сети решили две очень важные проблемы: обеспечение в принципе неограниченного доступа к ПК пользователей независимо от территориального расположения и возможность оперативного перемещения больших массивов информации на любые расстояния. Сетевые адаптеры и каналы связи решают в сети достаточно простую задачу - они передают сообщения с запросами и ответами от одного компьютера к другому, а основную работу по организации совместного использования ресурсов выполняют клиентские и серверные части операционных систем. Таким образом, когда на устройстве, с которым непосредственно взаимодействует пользователь, стала выполняться некоторая предварительная обработка информации, это привело к появлению модели взаимодействия «клиент-сервер». Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов. Сервер (аппаратное обеспечение)— компьютер (или специальное компьютерное оборудование), выделенный и/или специализированный для выполнения определенных сервисных функций. Выделенный (dedicated) сервер — это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие функции. Специфический тип сервера — это сетевой принтер. Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. По способу взаимодействия серверов и клиентов определяют два вида сетей: «клиент-сервер» (client-server) и «равный с равным» (peer-to-peer). Сети, построенные по принципу «равный с равным», называют также одноранговыми сетями, в которых все компьютеры имеют одинаковый статус - ранг. Топология локальных сетей Топология локальных сетей: Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. Существует три базовые топологии сети: 1. Шина ( bus ) — все компьютеры параллельно подключаются к общему кабелю, называемому шиной или магистралью, на концах которого находятся терминаторы (резисторы), предназначенные для предотвращения отражения сигнала. Информация от каждого компьютера одновременно передается всем остальным компьютерам. Топология шина своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения. В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно). В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность. Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями. Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать работать. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителейсигналов — репитеров или повторителей. Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи. 2. Звезда (star) — к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному компьютеру, от центрального — одному или нескольким периферийным. Звезда — это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка. Сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано. Выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу. В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине. Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8—16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд). Достоинство звезды состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов, а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. Общим недостатком для звезды является значительно больший, чем при других топологиях, расход кабеля. 3. Кольцо (ring) — компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера. В некоторых случаях применяют и другие топологии сети: Кольцо — это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи работает только один передатчик и один приемник (связь типа точка-точка ). Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, т.е. выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако, компьютеры в кольце не являются полностью равноправными, т.к. один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие — позже. Подключение новых абонентов в кольцо требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико. Сигнал в кольце проходит последовательно через все компьютеры сети – выход из строя хотя бы одного из них нарушает работу сети в целом. Это существенный недостаток кольца. Обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве. Под термином топологии сети могут подразумевать четыре различных понятий, относящиеся к различным уровням сетевой архитектуры: • Физическая топология - географическая схема расположения компьютеров и прокладки кабелей; • Логическая топология – структура связей, характер распространения сигналов по сети; • Топология управления обменом - принцип и последовательность передачи права на захват сети между отдельными компьютерами; • Информационная топология – направление потоков информации, передаваемой по сети. В зависимости от того, как в сети принимаются сигналы, выделяют следующие виды логической топологии: • в логических шинных топологиях каждый сигнал принимается всеми устройствами; • в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему. Кабели на основе витых пар Кабель на основе витых пар представляет собой несколько пар скрученных попарно изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки. Скручивание проводов позволяет свести к минимуму индуктивные наводки кабелей друг на друга и снизить влияние переходных процессов. Обычно в кабель входит две или четыре витые пары. Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, от подслушивания. Действие помех и величина излучения во вне увеличивается с ростом длины кабеля. Для устранения этих недостатков применяется экранирование кабелей. В экранированной витой паре каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk – перекрестные наводки). Для того чтобы экран защищал от помех, он должен быть обязательно заземлен. Встречается она значительно реже, чем неэкранированная витая пара. Основные достоинства неэкранированных витых пар – простота монтажа разъемов на концах кабеля, а также ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Линии связи на основе витых пар, как правило, довольно короткие (в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 1000 Мбит/с. Коаксиальные кабели Коаксиальный кабель представляет собой электрический кабель, состоящий из: Сфера применения коаксиального кабеля довольно обширна и определяется его основным назначением – передача электрических сигналов с низкими потерями. Например: • вещательные сети; • системы связи; • компьютерные сети; • системы дистанционного управления, контроля и измерений; • автоматические системы управления, производственные и системы автоматики и сигнализации и т.д.; Существует два основных типа коаксиального кабеля: • тонкий ( thin ) кабель, имеющий диаметр около 0, 5 см, более гибкий; • толстый ( thick ) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем. Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Однако, с тонким кабелем гораздо удобнее работать. Для подключения тонкого коаксиального кабеля к компьютерам используются так называемые BNC-коннекторы ( British Naval Connector ). В семействе BNC несколько основных компонентов: BNC – коннектор - либо припаивается, либо обжимается на конце кабеля. BNC Т-коннектор - соединяет сетевой кабель с сетевой платой компьютера. BNC бappeл – коннектор - применяется для сращивания двух отрезков тонкого коаксиального кабеля. BNC-терминатор - в сети с топологией «шина» для поглощения «свободных» сигналов терминаторы устанавливаются на каждом конце кабеля. Иначе сеть не будет работать.
Оптоволоконные кабели Оптоволоконный (волоконно-оптический) кабель – это принципиально иной тип кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением. Структура оптоволоконного кабеля похожа на структуру коаксиального. Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 – 10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за предел ы стекловолокна. Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно. Самым главный недостатком оптоволоконного кабеля является высокая сложность монтажа. Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно. Оптоволоконный кабель менее прочен и гибок, чем электрический. Чувствителен он и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Чувствителен он также к резким перепадам температуры, в результате которых стекловолокно может треснуть. Оптоволоконные кабели чувствительны также к механическим воздействиям (удары, ультразвук) - так называемый микрофонный эффект. Для его уменьшения используют мягкие звукопоглощающие оболочки.Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. В оптическом волноводе может одновременно существовать несколько типов волн (мод). Существуют два различных типа оптоволоконного кабеля: • многомодовый или мультимодовый кабель, более дешевый, но менее качественный; • одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым. Основные различия между этими типами связаны с разными режимами прохождения световых лучей в кабеле.
В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1, 3 мкм и передает свет только с такой же длиной волны (1, 3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км. В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62, 5 мкм, а диаметр внешней оболочки 125 мкм. Для передачи используется обычный светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0, 85 мкм, при этом наблюдается разброс длин волн около 30 – 50 нм. Допустимая длина кабеля составляет 2 – 5 км. Многомодовый кабель – это основной тип оптоволоконного кабеля в настоящее время, так как он дешевле и доступнее. Затухание в многомодовом кабеле больше, чем в одномодовом и составляет 5 – 20 дБ/км. Бескабельные каналы связи Кроме кабельных каналов в компьютерных сетях используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов. К тому же компьютеры сети можно легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны. Радиоканал использует передачу информации по радиоволнам, поэтому теоретически он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи достигает десятков мегабит в секунду. Главным недостатком радиоканала является его плохая защита от прослушивания, так как радиоволны распространяются неконтролируемо. Другой большой недостаток радиоканала – слабая помехозащищенность. Для локальных беспроводных сетей (WLAN – Wireless LAN) применяются подключения по радиоканалу на небольших расстояниях (до 100 метров) и в пределах прямой видимости. Чаще всего используются два частотных диапазона – 2, 4 ГГц и 5 ГГц. Скорость передачи – до 54 Мбит/с. Распространен вариант со скоростью 11 Мбит/с. Сети WLAN позволяют устанавливать беспроводные сетевые соединения на ограниченной территории (обычно внутри офисного или университетского здания или в общественных местах). Технология Wi-Fi (Wireless Fidelity) позволяет организовать связь между компьютерами числом от 2 до 15 с помощью концентратора (точки доступа, Access Point), или нескольких концентраторов, если компьютеров от 10 до 50. Кроме того, эта технология дает возможность связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов. Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение. Главное его преимущество по сравнению с радиоканалом – нечувствительность к электромагнитным помехам. Плохо работает инфракрасная связь в условиях сильной запыленности воздуха. Скорости передачи информации по инфракрасному каналу обычно не превышают 5—10 Мбит/с, но при использовании инфракрасных лазеров может быть достигнута скорость более 100 Мбит/с. Секретность передаваемой информации, как и в случае радиоканала, не достигается, также требуются сравнительно дорогие приемники и передатчики. Все это приводит к тому, что применяют инфракрасные каналы в локальных сетях довольно редко. В основном они используются для связи компьютеров с периферией (интерфейс IrDA). Инфракрасные каналы делятся на две группы: • Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Зато протяженность канала прямой видимости может достигать нескольких километров. • Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не помеха, но связь может осуществляться только в пределах одного помещения. Кодирование информации Информация в кабельных локальных сетях передается в закодированном виде – каждому биту передаваемой информации соответствует свой набор уровней электрических сигналов в сетевом кабеле. Правильный выбор кода позволяет повысить достоверность передачи информации, увеличить скорость передачи или снизить требования к выбору кабеля. При разных кодах предельная скорость передачи по одному и тому же кабелю может отличаться в два раза. Код должен обеспечивать хорошую синхронизацию приема, низкий уровень ошибок, работу с любой длиной передаваемых информационных последовательностей. Манчестерский код Манчестерский код (или код Манчестер-II) получил наибольшее распространение в локальных сетях. Он относится к самосинхронизирующимся кодам, но в отличие от RZ имеет не три, а всего два уровня, что способствует его лучшей помехозащищенности и упрощению приемных и передающих узлов. Логическому нулю соответствует положительный переход в центре битового интервала (то есть первая половина битового интервала – низкий уровень, вторая половина – высокий), а логической единице соответствует отрицательный переход в центре битового интервала (или наоборот). Как и в RZ, обязательное наличие перехода в центре бита позволяет приемнику манчестерского кода легко выделить из пришедшего сигнала синхросигнал и передать информацию сколь угодно большими последовательностями без потерь из-за рассинхронизации. Подобно коду RZ, при использовании манчестерского кода требуется пропускная способность линии в два раза выше, чем при применении простейшего кода NRZ. Например, для скорости передачи 10 Мбит/с требуется полоса пропускания 10 МГц Как и при коде RZ, в данном случае приемник легко может определить не только начало передаваемой последовательности бит, но и ее конец. Если в течение битового интервала нет перехода сигнала, то прием заканчивается. В манчестерском коде можно передавать последовательности бит переменной длины. Манчестерский код используется как в электрических, так и в оптоволоконных кабелях. Основное достоинство манчестерского кода – постоянная составляющая в сигнале (половину времени сигнал имеет высокий уровень, другую половину – низкий). Постоянная составляющая равна среднему значению между двумя уровнями сигнала. Если высокий уровень имеет положительную величину, а низкий – такую же отрицательную, то постоянная составляющая равна нулю. Если же один из уровней сигнала в манчестерском коде нулевой, то величина постоянной составляющей в течение передачи будет равна примерно половине амплитуды сигнала. Это позволяет легко фиксировать столкновения пакетов в сети по отклонению величины постоянной составляющей за установленные пределы. Бифазный код Бифазный код часто рассматривают как разновидность манчестерского, так как их характеристики практически полностью совпадают. Отличается от классического манчестерского кода тем, что он не зависит от перемены мест двух проводов кабеля. Этот код используется в сетях стандарта Token-Ring. Принцип данного кода прост: в начале каждого битового интервала сигнал меняет уровень на противоположный предыдущему, а в середине единичных (и только единичных) битовых интервалов уровень изменяется еще раз. Таким образом, в начале битового интервала всегда есть переход, который используется для самосинхронизации. В частотном спектре при этом присутствует две частоты. Структура пакетов данных Пакет содержит в себе следующие основные поля или части: • Стартовая комбинация битов или преамбула, обеспечивает предварительную настройку аппаратуры адаптера или другого сетевого устройства на прием и обработку пакета. Это поле может полностью отсутствовать или же сводиться к единственному стартовому биту. • Сетевой адрес (идентификатор) принимающего абонента, то есть индивидуальный или групповой номер, присвоенный каждому принимающему абоненту в сети. Этот адрес позволяет приемнику распознать пакет, адресованный ему лично, группе, в которую он входит, или всем абонентам сети одновременно (при широком вещании). • Сетевой адрес (идентификатор) передающего абонента, то есть индивидуальный номер, присвоенный каждому передающему абоненту. Этот адрес информирует принимающего абонента, откуда пришел данный пакет. Включение в пакет адреса передатчика необходимо в том случае, когда одному приемнику могут попеременно приходить пакеты от разных передатчиков. • Управляющая информация, которая может указывать на тип пакета, его номер, размер, формат, маршрут его доставки, на то, что с ним надо делать приемнику и т.д. • Данные (поле данных) – это та информация, ради передачи которой используется пакет. В отличие от всех остальных полей пакета поле данных имеет переменную длину, которая, собственно, и определяет полную длину пакета. Существуют специальные управляющие пакеты, которые не имеют поля данных. Их можно рассматривать как сетевые команды. Пакеты, включающие поле данных, называются информационными пакетами. Управляющие пакеты могут выполнять функцию начала и конца сеанса связи, подтверждения приема информационного пакета, запроса информационного пакета и т.д. • Контрольная сумма пакета – это числовой код, формируемый передатчиком по определенным правилам и содержащий в свернутом виде информацию обо всем пакете. Приемник, повторяя вычисления, сделанные передатчиком, с принятым пакетом, сравнивает их результат с контрольной суммой и делает вывод о правильности или ошибочности передачи пакета. Если пакет ошибочен, то приемник запрашивает его повторную передачу. • Стоповая комбинация служит для информирования аппаратуры принимающего абонента об окончании пакета, обеспечивает выход ее из состояния приема. Это поле может отсутствовать, если используется самосинхронизирующийся код, позволяющий определять момент окончания передачи пакета. В некоторых случаях в структуре пакета выделяют всего три поля: • Начальное управляющее поле пакета (или заголовок пакета ), то есть поле, включающее в себя стартовую комбинацию, сетевые адреса приемника и передатчика, а также служебную информацию. • Поле данных пакета. • Конечное управляющее поле пакета (заключение, трейлер), куда входят контрольная сумма и стоповая комбинация, а также, возможно, служебная информация. • В процессе сеанса обмена информацией по сети между передающим и принимающим абонентами происходит обмен информационными и управляющими пакетами по установленным правилам, называемым протоколом обмена. Это позволяет обеспечить надежную передачу информации при любой интенсивности обмена по сети. • Пример простейшего протокола:
Сеанс обмена начинается с запроса передатчиком готовности приемника принять данные. Для этого используется управляющий пакет " Запрос". Если приемник не готов, он отказывается от сеанса специальным управляющим пакетом. В случае, когда приемник готов, он посылает в ответ управляющий пакет " Готовность". Затем начинается передача данных. При этом на каждый полученный информационный пакет приемник отвечает управляющим пакетом " Подтверждение". В случае, когда пакет данных передан с ошибками, в ответ на него приемник запрашивает повторную передачу. Заканчивается сеанс управляющим пакетом " Конец", которым передатчик сообщает о разрыве связи. При реальном обмене по сети применяются многоуровневые протоколы, каждый из уровней которых предполагает свою структуру пакета (адресацию, управляющую информацию, формат данных и т.д.). Протоколы высоких уровней имеют дело с такими понятиями, как файл-сервер или приложение, запрашивающее данные у другого приложения, и вполне могут не иметь представления ни о типе аппаратуры сети, ни о методе управления обменом. Все пакеты более высоких уровней последовательно вкладываются в поле данных передаваемого пакета. Этот процесс последовательной упаковки данных для передачи называется инкапсуляцией пакетов. Каждый следующий вкладываемый пакет может содержать собственную служебную информацию, располагающуюся как до данных (заголовок), так и после них (трейлер), причем ее назначение может быть различным. Обратный процесс последовательной распаковки данных приемником называется декапсуляцией пакетов. Адресация пакетов Каждый абонент (узел) локальной сети должен иметь свой уникальный адрес (идентификатор или MAC-адрес ), для того чтобы ему можно было адресовать пакеты. Существуют две основные системы присвоения адресов сетевым адаптерам этих абонентов: Первая система сводится к тому, что при установке сети каждому абоненту присваивается индивидуальный адрес по порядку, к примеру, от 0 до 30 или от 0 до 254. Присваивание адресов производится программно или с помощью переключателей на плате адаптера. При этом требуемое количество разрядов адреса определяется из неравенства: 2n > Nmax где n – количество разрядов адреса, а Nmax – максимально возможное количество абонентов в сети. Например, восемь разрядов адреса достаточно для сети из 255 абонентов. Один адрес (обычно 1111....11 ) отводится для широковещательной передачи, то есть он используется для пакетов, адресованных всем абонентам одновременно. Такой подход применен в сети Arcnet. Достоинства данного подхода – малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток – трудоемкость задания адресов и возможность ошибки. Контроль уникальности сетевых адресов всех абонентов возлагается на администратора сети. |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 737; Нарушение авторского права страницы