![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Контрольная работа по разделу «МЕХАНИКА»
Раздел А (на «3») 1. Какое движение называется механическим? 2. Что называется системой отсчета? 3. Что такое траектория движения тела? 4. Что такое путь? 5. Спортсмен пробежал дистанцию 400 метров по дорожке стадиона и возвратился к месту старта. Чему равен путь l, пройденный спортсменов и модуль его перемещения S? 6. Назовите способы описания движения тела. 7. Какое движение называется равномерным? 8. Какое движение называется равноускоренным? 9. Какие физические величины входят в формулу для равномерного и неравномерного движения, и чем они отличаются друг от друга? 10. Какими функциями являются координата тела при равномерном прямолинейном движении и скорость тела при равноускоренном движении? 11. Какой функцией является перемещение тела при равноускоренном движении? 12. Запишите формулу для перемещения тела при равноускоренном движении. 13. Какая компонента ускорения тела имеет место при равноускоренном движении тела: нормальная или касательная? Чему в этом случае равна другая компонента ускорения и почему? 14. По какой формуле определяется касательное ускорение? 15. По какой формуле определяется нормальное ускорение? 16. Что называется периодом вращения? 17. Что называется частотой вращения? 18. Дайте определение понятию сила. 19. Что является причиной изменения скорости тела? 20. Сформулируйте принцип суперпозиции сил? Раздел В (на «4») 21. Тело движется прямолинейно с постоянной скоростью. Что можно сказать о равнодействующей всех приложенных к этому телу сил? 22. Тело движется равноускоренно и прямолинейно. Что можно сказать о равнодействующей всех приложенных к этому телу сил? 23. Сформулируйте первый, второй и третий законы Ньютона. 24. Сформулируйте закон всемирного тяготения. 25. В ящик массой 15кг садится ребенок массой 30 кг. Как при этом изменится сила трения ящика о пол? 26. Сформулируйте закон Гука. 27. В каких единицах измеряется коэффициент жесткости k? 28. Что называется импульсом тела, и в каких единицах он измеряется? 29. Какое выражение определяет изменение импульса тела? 30. По какой формуле следует рассчитывать работу силы F, если угол между направлением силы и перемещения S, равен α? 31. По какой формуле рассчитывается потенциальная энергия тела? 32. По какой формуле рассчитывается кинетическая энергия тела? 33. Чему равна работа силы F, если угол между направлением силы и перемещения S, равен 90 градусов? 34. Записать теорему об изменении кинетической энергии тела. 35. Положение с какой энергией стремится занять любая механическая система? 36. Запишите закон сохранения импульса. 37. Запишите закон сохранения энергии. 38. Каково ускорение свободного падения на высоте равной половине радиуса Земли? 39. Материальная точка движется по окружности радиуса 300 см со скоростью 35 м/с. Найти ее угловую скорость. 40. Движения двух велосипедистов заданы уравнениями: x1=5∙ t и x2=150-10∙ t. Найти время и место их встречи. Раздел В (на «5») 41. При скорости 15 км/ч тормозной путь автомобиля равен 1, 5 м. Каким будет его тормозной путь при скорости 90 км/ч? Ускорение в обоих случаях одно и то же, 42. Космический корабль массой 8 т приблизился к орбитальной станции массой 20 т на расстояние 100 м. Найти силу их взаимного притяжения. 43. Упряжка собак при движении саней по снегу может действовать с максимальной силой 0, 5кН. Какой массы сани с грузом может перемещать упряжка, если коэффициент трения равен 0, 1? 44. Мальчик массой 50 кг, скатившись на санках с горки, проехал по горизонтальной дороге до остановки путь 20 м за 10 с.Найти силу трения и коэффициент трения. 45. С какой скоростью должна лететь хоккейная шайба массой 160г, чтобы ее импульс был равен импульсу пули массой 8г, летящей со скоростью 600 м/с? 46. Поезд массой 2000 т, двигаясь прямолинейно, увеличил скорость от 36 до 72 км/Ч.Найти изменение импульса. 47. Найти кинетическую энергию тела массой 400г, упавшего с высоты 2 м, в момент удара о Землю. 48. Найти потенциальную энергию тела массой 100г, брошенного вертикально вверх со скоростью 10 м/с, в высшей точке подъема.
ПОЛУПРОВОДНИКИ. Природа электрического тока в полупроводниках. Подавляющее большинство веществ не принадлежит ни к числу таких хороших диэлектриков, как янтарь, кварц или фарфор, ни к числу таких хороших проводников тока, как металлы, а занимает промежуточное положение между теми и другими. Их называют полупроводниками. Удельные проводимости различных тел могут иметь очень сильно отличающиеся значения. Хорошие диэлектрики имеют ничтожную проводимость; от 10-8 до 10-18 См/м; проводимость металлов, наоборот, очень велика: от 106 до 108 См/м. Полупроводники по своей проводимости лежат в интервале между этими крайними пределами. Особый научный и технический интерес представляют так называемые электронные полупроводники. Как и в металлах, прохождение электрического тока через такие полупроводники не вызывает никаких химических изменений в них; следовательно, в них свободными носителями заряда являются электроны, а не ионы. Иными словами, проводимость этих полупроводников, как и металлов, является электронной. Однако уже огромное количественное различие между удельными проводимостями указывает на то, что существуют весьма глубокие качественные различия в условиях прохождения электрического тока через металлы и через полупроводники. Ряд других особенностей в электрических свойствах полупроводников также указывает на существенные различия между механизмом проводимости металлов и полупроводников. Удельная проводимость а есть ток, проходящий через единичное сечение под действием электрического поля, напряженность которого равна 1 В/м. Ток этот будет тем больше, чем больше скорость u, приобретаемая в этом поле носителями зарядов, и чем больше концентрация носителей зарядов n, т. е. число их в единице объема. В жидких и твердых телах и неразреженных газах вследствие «трения», испытываемого движущимися зарядами, скорость их пропорциональна напряженности поля. В этих случаях скорость и, соответствующую напряженности поля 1 В/м, называют подвижностью заряда. Если заряды движутся вдоль поля со скоростью и, то в единицу времени через единичное сечение пройдут все заряды, находящиеся на расстоянии и или меньшем от этого сечения (рис. 183). Заряды эти заполняют объем и [м3], и число их равно пи. Переносимый ими через единичное сечение в единицу времени заряд равен nuq, где q — заряд носителя тока. Следовательно,
Различие в проводимости металлов и полупроводников связано с огромным различием в концентрации носителей тока. Измерения показали, что в 1 м3 металлов имеется 1028—1029 электронов, т. е. на каждый атом металла приходится примерно по одному свободному электрону. В полупроводниках же концентрация электронов проводимости во много тысяч и даже миллионов раз меньше. Следующее важное различие в электрических свойствах металлов и полупроводников заключается в характере зависимости проводимости этих веществ от температуры. Известно, что при повышении температуры сопротивление металлов растет, т. е. проводимость их уменьшается, проводимость же полупроводников при повышении температуры растет. Подвижность электронов в металлах уменьшается при нагревании, а в полупроводниках она, в зависимости от того, какой температурный интервал рассматривается, может как уменьшаться, так и возрастать с температурой. Тот факт, что в полупроводниках, несмотря на уменьшение подвижности, проводимость при повышении температуры растет, свидетельствует о том, что при повышении температуры в полупроводниках происходит очень быстрое возрастание числа свободных электронов, и влияние этого фактора пересиливает влияние уменьшения подвижности. При очень низкой температуре (вблизи 0 К) в полупроводниках имеется ничтожно малое число свободных электронов, и поэтому они являются почти совершенными диэлектриками; проводимость их чрезвычайно низка. С возрастанием температуры число свободных электронов резко возрастает, и при достаточно высокой температуре полупроводники могут иметь проводимость, приближающуюся к проводимости металлов. Эта сильная зависимость числа свободных электронов от температуры является самой характерной особенностью полупроводников, резко отличающей их от металлов, в которых число свободных электронов от температуры не зависит. Она указывает на то, что в полупроводниках, для того чтобы перевести электрон из «связанного» состояния, в котором он не может переходить от атома к атому, в «свободное» состояние, в котором он легко перемещается по телу, необходимо сообщить этому электрону некоторый запас энергии W. Эта величина W, называемая энергией ионизации, для разных веществ различна, но, в общем имеет значения от нескольких десятых электронвольта до нескольких электронвольт. При обычных температурах средняя энергия теплового движения много меньше этой величины, но, как мы знаем некоторые частицы (в частности, некоторые электроны) имеют скорости и энергии значительно большие, чем среднее значение. Определенная, очень небольшая доля электронов имеет достаточный запас энергии, чтобы перейти из «связанного» состояния в «свободное». Эти электроны и обусловливают возможность прохождения электрического тока через полупроводник даже при комнатной температуре. В тех случаях, которые были рассмотрены выше, добавочная энергия, необходимая для освобождения электрона, сообщалась ему за счет теплового движения, т. е. за счет запаса внутренней энергии тела. Но эта энергия может передаваться электронам и при поглощении телом световой энергии. Сопротивление таких полупроводников при действии на них света значительно уменьшается. Это явление получило название фотопроводимости или внутреннего фотоэлектрического эффекта. Приборы, основанные на этом явлении, в последнее время все шире используются в технике для целей сигнализации и автоматики. Мы видели, что в полупроводниках лишь очень небольшая доля всех электронов находится в свободном состоянии и участвует в создании электрического тока. Но не следует думать, будто постоянно одни и те же электроны находятся в свободном состоянии, а все остальные — в связанном. Напротив, в полупроводнике все время идут два противоположных процесса. С одной стороны, идет процесс освобождения электронов за счет внутренней или световой энергии; с другой стороны, идет процесс захвата освобожденных электронов, т. е. воссоединения их с тем или иным из оставшихся в полупроводнике ионов — атомов, потерявших свой электрон. В среднем каждый освобожденный электрон остается свободным лишь очень короткое время — от 10-3 до 10-8 с (от одной тысячной до одной стомиллионной секунды). Постоянно некоторая доля электронов оказывается свободной, но состав этих свободных электронов все время изменяется: одни электроны переходят из связанного состояния в свободное, другие — из свободного в связанное. Равновесие между связанными и свободными электронами является подвижным, или динамическим. Движение электронов в полупроводниках. Полупроводники с электронной и дырочной проводимостью. В полупроводниках, как и в металлах, электрический ток осуществляется движением электронов. Однако условия и характер движения электронов в полупроводниках отличаются существенными особенностями, и это обусловливает своеобразные электрические свойства полупроводников. В металлах концентрация свободных электронов очень велика, так что большая часть атомов оказывается ионизованной; практически вся проводимость металлов объясняется поведением «свободных электронов». В полупроводниках же, где концентрация свободных электронов значительно меньше, нужно учитывать, наряду с движением в электрическом поле этих свободных электронов, и другой процесс, который может играть не меньшую роль в их проводимости.
Пока в полупроводнике не действует внешнее электрическое поле, оба эти процесса имеют хаотический характер, так что в среднем каждому электрону, смещенному в одном направлении, соответствует перемещение электрона в противоположном направлении; то же происходит и с перемещением положительно заряженных мест. Но при наложении поля оба процесса получают преимущественное направление: свободные электроны движутся в некотором избытке против поля, а положительные места — в некотором избытке по полю. Оба эти преимущественные перемещения дают ток одного направления (по полю), и результирующая проводимость обусловливается обоими процессами. Рис. 184 иллюстрирует описанный процесс. Если мы представим себе цепочку атомов полупроводника, в одном месте которой образовался положительный ион 1, то под действием сил поля будет происходить перенос электрона от атома 2 к иону /, затем от атома 3 к иону 2, от атома 4 к иону 3 и т. дм а результатом будет перемещение положительного заряженного места в обратном направлении. Таким образом, в полупроводнике имеет место и движение свободных электронов против поля и перенос их от нейтральных атомов к ионам, равносильный движению положительного заряда по направлению поля. То место полупроводника, где вместо нейтрального атома имеется положительный ион, называют дыркой и говорят, что ток в проводнике осуществляется частично движением свободных электронов против поля и частично движением дырок по полю. Нужно только помнить при этом, что фактически всегда имеет место только движение электронов, но движение связанных электронов от атомов к ионам приводит к такому результату, как будто движутся положительно заряженные дырки. Встречаясь с дыркой, свободный электрон может воссоединиться с положительным ионом. При этом свободный электрон и дырка исчезают. Этот процесс называют рекомбинацией. В идеально чистом полупроводнике без всяких чужеродных примесей каждому освобожденному тепловым движением или светом электрону соответствовало бы образование одной дырки, т. е. число участвующих в создании тока электронов и дырок было бы одинаково. Однако такие идеально чистые полупроводники в природе не встречаются, а изготовить их искусственно необычайно трудно. Малейшие следы примесей коренным образом меняют свойства полупроводников. В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется только движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n-типа (от латинского слова nega-iivus — отрицательный). В других случаях невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками р-типа (от латинского слова positivus — положительный). Наряду с полупроводниками р- и n-типа, могут быть, разумеется, и полупроводники смешанного типа, в которых заметную роль играет и электронная и дырочная проводимость. В частности, смешанную проводимость мы имеем в рассмотренном выше беспримесном полупроводнике. Полупроводниковые выпрямители. В местах контакта между двумя полупроводниками с разным механизмом проводимости — дырочным и электронным — наблюдается ряд замечательных явлений. Оказывается, что место контакта таких полупроводников обладает весьма различной проводимостью в зависимости от того, будет ли электрическое поле направлено от р-полупроводника к n-полупроводнику или наоборот. Если, например, привести в соприкосновение закись меди (Cu20), имеющую дырочную проводимость, и двуокись титана (TiO2), имеющую электронную проводимость, то при одном и том же напряжении ток в направлении от закиси меди к двуокиси титана будет в 10 000 раз сильнее, чем в обратном направлении. Чтобы понять причину этих явлений, нужно разобраться в процессах, происходящих на так называемых р — n-переходах, т. е. на границе соприкосновения дырочных и электронных полупроводников. В электронном проводнике основными носителями тока являются свободные электроны, число которых гораздо больше, чем число дырок. В дырочном проводнике, наоборот, число дырок гораздо больше, чем число свободных электронов. Когда мы приводим эти два вещества в соприкосновение, то электроны начинают диффундировать из n-полупроводника, где их концентрация выше, в р-полупроводник, где их имеется меньше, подобно тому как атомы растворенного вещества диффундируют из крепкого раствора в слабый, если привести растворы в соприкосновение. Точно так же и по тем же причинам дырки будут диффундировать из дырочного полупроводника в электронный. В результате этого пограничный слой обоих полупроводников обедняется основными носителями, т. е. на границе создается так называемый запирающий слой, сопротивление которого значительно больше, чем сопротивление всей толщи обоих полупроводников. Фактически именно сопротивлением этого запирающего слоя и определяется сопротивление всего тела. Естественно возникает вопрос: до каких пор будет происходить уход дырок из р-полупроводника в n-полупроводник и уход электронов в обратном направлении? Ответить на этот вопрос нетрудно. Так как из дырочного полупроводника уходят положительные заряды, а притекают в него электроны, то вблизи границы этот полупроводник заряжается отрицательно. Точно так же пограничный слой электронного полупроводника заряжается положительно, так как сюда притекают дырки, а отсюда уходят электроны. Таким образом, вблизи границы возникает двойной электрический слой, в котором поле направлено от электронного полупроводника к дырочному, т. е. противодействует диффузии электронов и дырок (поле Е на рис. 186). Когда это поле достигнет такой напряженности, что его действие уравновесит стремление свободных электронов и дырок диффундировать в «чужие» области, будет достигнуто равновесие, и дальнейшая диффузия прекратится.
Такими же свойствами обладает селеновый выпрямитель. Он представляет собой нанесенный на никелированную железную пластинку слой селена, поверх которого наносится второй электрод из сплава кадмия, олова и висмута. После длительного прогрева и пропускания тока такая система тоже приобретает свойство односторонней проводимости. В селеновых выпрямителях запирающий слой образуется также на границе между селеном (дырочным полупроводником) и селенистым кадмием, который возникает в процессе обработки пластин и имеет электронный механизм проводимости. Полупроводниковые фотоэлементы. Если в каком-нибудь полупроводниковом выпрямителе, например медно закисном, селеновом или кремниевом, сделать внешний электрод настолько тонким, чтобы он был прозрачен для света, то при освещении полупроводника в цепи, в которую он включен, возникает электрический ток (рис. 191). Таким образом, в этих случаях свет является источником э. д. е., т. е. пластинка полупроводника представляет собой генератор электрического тока, в котором световая энергия преобразуется в электрическую.
Измерение заряда электрона
Наиболее прямое определение заряда электрона было произведено в опытах Р. Милликена, в которых измерялись очень малые заряды, возникавшие на мелких частицах. Идея этих опытов заключалась в следующем. Согласно основным представлениям электронной теории заряд какого-либо тела возникает в результате изменения содержащегося в нем числа электронов (или положительных ионов, заряд которых равен или кратен заряду электрона). Вследствие этого заряд любого тела должен изменяться только скачкообразно и притом такими порциями, которые содержат целое число зарядов электрона. Поэтому установив на опыте дискретный характер изменения электрического заряда, можно получить тем самым и подтверждение существования электронов, и определить заряд одного электрона (элементарный заряд). Понятно, что в подобных опытах измеряемые заряды должны быть очень малыми и состоять лишь из небольшого числа зарядов электрона. В противном случае добавление или отнятие одного электрона будет приводить только к небольшому в процентном отношении изменению общего заряда и поэтому может легко ускользнуть от наблюдателя вследствие неизбежных ошибок при измерении заряда. В опытах было обнаружено, что заряд частичек действительно изменяется скачками, причем изменения заряда всегда были кратны определенному конечному заряду.
Капельки масла при распылении заряжаются, и поэтому на каждую действуют две силы: результирующая силы тяжести и выталкивающей (архимедовой) силы и сила, вызванная электрическим полем.
ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ Электронная проводимость металлов. Прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их. Это обстоятельство заставляет предполагать, что атомы металла при прохождении тока не перемещаются от одного участка проводника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке (1845 —1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминиевый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3 000 000 Кл). Производя затем тщательный анализ места соприкосновения меди и алюминия, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током. Каким же образом происходит перенос зарядов при прохождении тока через металл? Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положительные заряды, входящие в состав каждого атома, существенно отличаются друг от друга. Положительный заряд связан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заряды — электроны, обладающие определенным зарядом и массой, почти в 2000 раз меньшей массы самого легкого атома — водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заряженный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов металла, образуя его кристаллическую решетку (см. том I). Одним из наиболее убедительных явлений, обнаруживающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что электроны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с веществом металла. Так как причпрохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электричества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси *), но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси. При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед. Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе e/m). В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль /. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l, 8∙ 1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами. Итак, опыты показывают, что в металлах имеются свободные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упорядоченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике). Строение металлов. Как свободные электроны, входящие в состав металла, так и его ионы находятся в непрерывном беспорядочном движении. Энергия этого движения и представляет собой внутреннюю энергию тела. Движение ионов, образующих кристаллическую решетку, состоит лишь в колебаниях около своих положений равновесия. Свободные же электроны могут перемещаться по всему объему металла.
Дело, однако, изменится, если мы приложим к концам проводника разность потенциалов, т. е. создадим внутри металла электрическое поле. Пусть напряженность поля равна E. Тогда на каждый из электронов действует сила eЕ (е — заряд электрона), направленная вследствие отрицательности заряда электронов противоположно полю. Благодаря этому электроны получат дополнительные скорости, Направленные в одну сторону (рис. 143, б). Теперь уже движение электронов не будет вполне хаотичным: наряду с беспорядочным тепловым движением электронный газ будет перемещаться как целое, и поэтому возникнет электрический ток. Выражаясь образно, можно сказать, что ток в металлах представляет собой «электронный ветер», вызванный внешним полем. Причина электрического сопротивления. Теперь мы можем понять, почему металлы оказывают сопротивление электрическому току, т. е. почему для поддержания длительного тока нужно все время поддерживать разность потенциалов на концах металлического проводника. Если бы электроны не испытывали никаких помех в своем движении, то, будучи приведены в упорядоченное движение, они двигались бы по инерции, без действия электрического поля, неограниченно долго. Однако в действительности электроны испытывают соударения с ионами. При этом электроны, обладавшие перед соударением некоторой скоростью упорядоченного движения, после соударения будут отскакивать в произвольных, случайных направлениях, и упорядоченное движение электронов (электрический ток) будет превращаться в беспорядочное (тепловое) движение: после устранения электрического поля ток очень скоро исчезнет. Для того чтобы получить длительный ток, нужно после каждого соударения вновь и вновь гнать электроны в определенном направлении, а для этого нужно, чтобы на электроны все время действовала сила, т. е. чтобы внутри металла было электрическое поле. Чем большая разность потенциалов поддерживается на концах металлического проводника, тем сильнее внутри него электрическое поле, тем больше ток в проводнике. Расчет, которого мы не приводим, показывает, что разность потенциалов и сила тока должны быть строго пропорциональны друг другу (закон Ома). Двигаясь под действием электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях эта энергия частично передается ионам решетки, отчего они приходят в более интенсивное тепловое движение. Таким образом, при наличии тока все время происходит переход энергии упорядоченного движения электронов (тока) в энергию хаотического движения ионов и электронов, которая представляет собой внутреннюю энергию тела; а это значит, что внутренняя энергия металла увеличивается. Этим объясняется выделение джоулева тепла. |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 551; Нарушение авторского права страницы