Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие о квантовой теории теплоемкости. Фононы



Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры (см. § S3). Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии то при столкновении молекул вращательные и колебательные степени свободы прак­тически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно одноатомному.

Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между колебательными, т. е. (см. § 230), то с ростом

температуры возбуждаются вначале вращательные степени свободы, в результате чего теплоемкость возрастает; при дальнейшем росте температуры возбуждаются и колеба­тельные степени свободы и происходит дальнейший рост теплоемкости (см. рис. 80).

Функции распределения Ферми — Дирака для Т=0 К и Т> 0 заметно различаются (рис. 312) лишь в узкой области энергий (порядка кТ). Следовательно, в процессе нагревания металла участвует лишь незначительная часть всех электронов проводимо­сти. Этим и объясняется отсутствие заметной разницы между теплоемкостями метал­лов и диэлектриков, что не могло быть объяснено классической теорией (см. § 103).

Как уже указывалось (см. § 73), классическая теория не смогла объяснить также зависимость теплоемкости твердых тел от температуры, а квантовая статистика реши­ла эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристал­лической решетки независимы (модель кристалла как совокупности независимых коле­блющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических ос­цилляторов).

Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией Фонон есть квант энергии звуко-

вой волны (так как упругие волны — волны звуковые). Фононы являются квазичасти-цами — элементарными возбуждениями, ведущими себя подобно микрочастицам. Ана­логично тому как квантование электромагнитного излучения привело к представлению о фотонах, квантование упругих волн привело к представлению о фононах.

Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (напри­мер, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при сто­лкновении фононов в кристалле их импульс может дискретными порциями передавать-


ся кристаллической решетке —- он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе — Эйнштейна (см. § 235), так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным; поэтому в формуле (235.1) для фононов необходимо ц положить равным нулю.

Применение статистики Бозе — Эйнштейна к фононному газу — газу из невза­имодействующих боэе-частиц — привело П. Дебая к количественному выводу, соглас­но которому при высоких температурах, когда (классическая область), теплоем­кость твердых тел описывается законом Дюлонга и Пти (см. § 73), а при низких температурах, когда (квантовая область), — пропорциональна кубу термодина­мической температуры: В данном случае — характеристическая температу­ра Дебая, определяемая соотношением где — предельная частота уп­ругих колебаний кристаллической решетки. Таким образом, теория Дебая объяснила расхождение опытных и теоретических (вычисленных на основе классической теории) значений теплоемкости твердых тел (см. § 73 и рис. 113).

Модель квазичастиц — фононов — оказалась эффективной для объяснения откры­того П. Л. Капицей явления сверхтекучести жидкого гелия (см. § 31, 75). Теория сверхтекучести, созданная (1941) Л. Д. Ландау и развитая (1947) российским ученым Н. Н. Боголюбовым (р. 1909), применена впоследствии к явлению сверхпроводимости (см. § 239).


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 501; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.008 с.)
Главная | Случайная страница | Обратная связь