Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Опять в ракете. Летят к Марсу



 

Снова пустили в ход взрывание и снова стали удаляться от Солнца, исследуя пространство от Земли к Марсу. Неведомая планета, которую они только что оставили, скоро исчезла из вида, как будто сама удаляясь от них. Но ученых она продолжала занимать не менее, чем когда они ее увидали: перебирали и изучали захваченные с нее камни, металлы и сплавы. Золото, серебро и платина были самые натуральные, с незначительным количеством посторонних металлов. Средний размер планеты вычислили метров в 900. Не мудрено поэтому, что земные астрономы ее не знают. На таком расстоянии и такую незначительную массу невозможно заметить. Ведь насилу заметили спутников Марса, с диаметром в 10 раз большим и с площадью в сто раз обширнее! Объем неведомой планеты был близок к 360 миллионам метров; масса не могла быть точно определена, но, судя по обилию тяжелых металлов даже на поверхности, масса была не менее 7 200 миллионов тонн, если принять среднюю плотность планеты за 10. Планета слабо вращалась.

– Вот материал, – сказал русский, – которого довольно, чтобы устроить комфортабельные оранжереи-жилища для всего человечества.

– Ведь это придется около тонны на человека! Довольно ли этого? – возразил Ньютон.

– Если и мало, – заметил Лаплас, – то можно и подбавить, отыскав еще подобные небесные тела. Пространство даже до Марса еще не пройдено. На пути до него мы можем встретить еще тысячи таких крохотных планеток…

– Очень вероятно, – сказал Ньютон.

И действительно, при своем спиральном удалении от Солнца они почти каждый месяц стали встречать астероиды: некоторые больше описанного, но чаще – меньших размеров. Немногие были ими исследованы; но в исследованных редко не находили тяжелых и драгоценных металлов…

– Странно, – заметил Норденшельд. – На Земле так мало находят золота и платины, а здесь ими хоть улицу мости…

– Да, это удивительно, – подтвердил Ньютон. – Однако с точки зрения одной гипотезы легко объяснимо. Весьма возможно, – продолжал он, – что эти сравнительно небольшие массы – только части или осколки больших планет. Как осколки, некоторые из них могут содержать внутренние, а другие наружные элементы целой планеты. Но центральные части планеты должны состоять из наиболее плотных веществ, как, например, золота, платины, иридия и их сплавов. Это самое мы и находим в открытых нами планетках. На некоторых из них ведь мы совсем не находим тяжелых металлов: это значит, что такие планетки составляли наружную часть большой планеты…

– Такая гипотеза дана Ольберсом для объяснения образования множества астероидов между орбитами Марса и Юпитера, – заметил Лаплас. – Судя по нашим открытиям, она может быть применима и для образования небесных тел между Землей и Марсом.

– Мне непонятно, – спросил один из слушателей, – что может служить причиною разрыва большой планеты на многие малые?

– Да, это не ясно! – сказал Иванов. – Может быть, химические процессы внутри планеты образовали газы, расширение которых разорвало планету, как разрывает бомбу; может быть, столкновение планет это сделало, а может быть, играла роль центробежная сила, непрерывно растущая по мере сжатия вращающейся планеты.

– Одна она могла бы только произвести отделение от массы спутников и колец, но не то, что мы видим, – заметил Ньютон.

– Да, пожалуй, я с вами согласен, – сказал русский. – Возможно, что действовала совокупность этих и других неизвестных причин, – добавил он, подумав.

– Но из ваших речей можно сделать интересные выводы, – заметил Франклин. – Во-первых, нашу Землю также когда-нибудь может разорвать на части; во-вторых, – центральные области нашей планеты должны содержать в изобилии драгоценные металлы…

– Ни то, ни другое мы не можем теперь отрицать, – послышались в ответ многие голоса.

– А если это так, – сказал Иванов, – то хорошо, если человечество, не дожидаясь возможной катастрофы, переселится в иные миры – хотя бы в эти эфирные пустыни, которые содержат все материалы, необходимые для безопасного устройства тут человека.

 

Встречают на пути газовые кольца

 

Каждый оборот вокруг Солнца требовал более года и открывал им новые миры. Несколько раз попадали в газовые кольца, – очень прозрачные, разреженные, едва заметные, но толщиною в несколько километров. Они появлялись сначала в виде тонкой туманной полоски, заостренной на концах. Когда ракета влетала в нее, то слышался странный шум, и температура в ракете несколько повышалась. Скорость ее немного отличалась от скорости этих колец, но ракета, удаляясь от Солнца, пересекала их быстро и теряла из вида. Множество этих колец, как и планеток, разумеется, было пропущено незамеченными… Собрали газы одного из колец, сгустили насосами, произвели анализ и нашли кислород, азот, соединения углерода, следы водорода и других газов.

– Вот это восхитительно, – сказал Иванов после первой находки. – В таком кольце очень недурно поселить колонии: во-первых, под боком будут газы, во-вторых, если и будут они утекать из ракеты, то не совсем, а останутся в окружающей атмосфере, из которой их легко извлечь обратно. Это открытие показывает, что расширяемость газов не беспредельна, как то выходит по закону Мариотта-Бойля, но что-то ее ограничивает.

– Вывод не новый, – заметил Лаплас, – в нашей родной атмосфере замечается то же.

– Там ограничивает беспредельное расширение газов притяжение Земли и молекулярная теория, – начал Франклин.

– И здесь то же, т. е. притяжение самого газового кольца, а может быть, что-нибудь и другое, – заметил Ньютон.

– Но что же, что же!? – воскликнул с нетерпением Франклин. – Притяжение кольца недостаточно…

– Не знаю, – сказал Ньютон. – Впрочем, возможно, что газы распространены по всей планетной системе, хотя и в малом количестве. Так думал, например, Менделеев.

 

Приближаются к Марсу

 

Год проходил за годом, до Марса уже было недалеко. Пространство между двумя соседними орбитами было настолько изучено, что можно было бы дать и телеграмму Земле о результатах исследования: но потребовалось бы плоское зеркало метров в 100 диаметром, а сооружение его сейчас было не совсем удобно. Проще было возвратиться на Землю или дать телеграмму с орбиты Луны пли откуда-нибудь еще ближе.

Поблизости Марса оборот ракеты кругом Солнца немного не достигал двух лет. Скуки и тоски накопилось изрядно; всем хотелось на Землю. Возвратились бы на нее, конечно, не по спирали, а сокращенным путем. Им можно было достигнуть Земли в какие-нибудь четыре месяца. Марс был уже на расстоянии 10 миллионом километров и имел вид круглой луночки с диаметром в 4 минуты, т. е. казался в 7 раз меньше нашего месяца, каким он представляется с Земли. В телескоп были великолепно видны его «каналы» и «моря», неизвестно чем наполненные, также горы, долины, полярные «льды» и «снега», неизвестно из чего составленные.

– Ближе к Марсу не полетим, – заметил Ньютон. – Спуск ни планету крайне рискованный; мы все утомлены и, главное, должны как можно скорее известить Землю о наших важных открытиях…

Некоторые протестовали, а другие даже были рады скорее увидеть родину.

– Марс от нас не уйдет… Во второй экспедиции доберемся и до него, – заметил Иванов.

 

55. Возможно ли посещение планет?

 

Времени свободного было очень много. Ученые немало беседовали о планах путешествий, но больше о Земле, ее обитателях, делах, которые им представлялись теперь в розовом свете.

Нам интереснее знать суждения ученых о планах дальнейших путешествий и условиях жизни в иных мирах. Вот их разговоры на эту тему.

– Спускались же совершенно благополучно на Луну, живем же преотлично тут, почти на таком же расстоянии от Солнца, как Марс! И что же? Тепло по-прежнему, фрукты зреют медленнее, но дают вполне достаточно для пропитания; а если мало, то разве нельзя построить еще две, три оранжереи? – так протестовал и кипятился очень юный и рьяный член экспедиции.

– Есть затруднения, – начал Ньютон, обращаясь ко всему собранию. – И чтобы одолеть их, нужно немало поработать на Земле, – как мозгом, так и руками. Выясним же препятствия, которые мешают нам теперь же спуститься на планеты, – помимо нашего переутомления и общего желания пожить и отдохнуть на родной планете…

Затихло общество, приготовляясь внимательно слушать.

– Начнем с температур, – продолжал Ньютон. – Представим себе вычерненную сажей плоскость, перпендикулярную к солнечным лучам. Она поглощает почти все падающие на нее лучи. Другая, обратная ее сторона не должна терять теплоты. Если, например, она будет покрыта полированным серебром, то это почти осуществится. Такая пластинка в эфирном пространстве теряет теплоту пропорционально четвертой степени ее абсолютной температуры. Это и есть закон Стефана и Вина, на который мы будем опираться при дальнейших выводах. Насколько он правдоподобен, видно из вытекающих следствий. Постоянные этого закона, определяемые путем опыта, дают возможность решить множество интересных для нас задач. Вот мои личные вычисления. Температура поверхностных частей Солнца составит около 6½ тысяч градусов C. Даю обыкновенную температуру; абсолютная начинается ниже нуля C на 273°. Абсолютный нуль, по известной гипотезе, начинается с действительного отсутствия теплоты в теле. Температура указанной черной пластинки, на расстоянии Земли, может достигать 152° тепла. Это есть предельная высшая температура, которая может быть получена на Земле, Луне и телах, расположенных в эфирном пространстве на таком же расстоянии от Солнца, как и наша планета. Это также максимальная температура оранжерей и ракет наших новых колоний поблизости Земли. Ее достаточно, чтобы жарить мясо. Но я не буду говорить про другие способы, – например, с помощью зеркал, – увеличивать эту температуру. Даем тут опять максимальную температуру по Цельсию, но на разных расстояниях от Солнца, приняв расстояние до Земли за единицу.

– Из этой таблицы уже видно, что крайний верхний предел наших путешествий в ракете – удвоенное расстояние от Солнца, т. е. около 150 миллионов километров от орбиты Земли или 175 миллионов от орбиты Марса к Юпитеру.

– Но позвольте, – возразил Лаплас, – разве мы не можем употребить для повышения температуры в ракете и оранжерее зеркала: плоские, цилиндрические и сферические?

– Можем, – ответил Ньютон. – В особенности здесь, где нет относительной тяжести и где зеркала легко сделать очень тонкими. На планетах мы уже встретили бы затруднения.

– Но есть и еще средства увеличить температуру оранжерей, именно: если их стекла будут свободно пропускать свет и вообще лучи высокой преломляемости и не выпускать лучи темные, тепловые низкой преломляемости…

– Совершенно верно, дорогой Франклин, – ответил Ньютон. – Тогда лучи Солнца будут входить в оранжерею, превращаться там в темные и оставаться в оранжерее, отчего температура и повысится значительнее наших расчетов. Но точных данных о степени повышения температуры таким способом у меня пока нет. Опять-таки для исследований и справок придется обратиться к Земле, а теперь этот вопрос приличнее отложить…

– Так или иначе, – сделал заключение Иванов, – с помощью ли зеркал или другими способами, но путешествие за Марс, может быть, со временем продолжится до Юпитера и даже дальше…

– Ничего не имею возразить против этого, – ответил Ньютон. – Но вот позвольте предложить вам таблицу наибольших температур для разных планет:

– Отсюда видно, что максимальная температура внутренних планет («нижних») чрезмерно велика, но для путешествующей ракеты выгодна в техническом отношении, – сказал Ньютон.

– В техническом?! – заметил один из слушателей. – Но не будет ли слишком высока температура?

– Не забывайте, – возразил Ньютон, – что в таблице дана высшая идеальная, едва осуществимая на практике степень тепла, – как для Земли +153°. Вообразите ту же пластинку, нормальную к лучам и также полированную с задней стороны, но покрытую с передней части уже не сажей, а поверхностью более способной отражать и рассеивать падающие на нее лучи света. Тогда температура будет ниже. Она будет ниже нуля, даже может дойти до 273° холода, или до абсолютного нуля, если все лучи Солнца, падающие на нее, будут отражаться, тогда как другая сторона, будучи покрыта сажей, будет все лучи рассеивать в эфирное пространство. Этот вывод справедлив для каждой такой пластинки. Без сомнения, это осуществимо только отчасти, но все же указывает на возможность достижения ближайших планет – Меркурия и Венеры – и даже еще большего сближения ракеты с Солнцем. Если бы мы не устали, то мы и сейчас бы могли туда отправиться в полной безопасности. Чтобы не сгореть, нам тогда только бы пришлось открывать черную часть задней поверхности ракеты и закрывать переднюю, прозрачную, высеребренными ставнями. Мы могли бы даже, если бы только захотели, замерзнуть в нашей ракете у самого Солнца или, по крайней мере, очень близко от него.

– Удивительно! – восхищались слушатели.

– Итак, – заключил Иванов, – путешествия в ракете ближе к Солнцу и дальше от него совершенно обеспечены в теоретическом отношении…

– Да! – сказал Ньютон. – Но этот вывод сейчас же теряет свою силу при спуске на планеты. Опять будем говорить прежде всего о температуре. Вообразим изолированный черный шарик в эфирном пространстве, т. е. некоторое подобие планеты. Он теряет в 4 раза больше тепла, сравнительно с нашим двухсторонним диском; поэтому средняя его температура будет ниже в 1, 4 раза (корень четвертой степени из четырех). Таким образом, найдем для разных планет следующую среднюю температуру по Цельсию:

Меркурий +200°, Венера +90°, Земля +27°, Марс -23°, Юпитер -138°, Сатурн -174°, Уран -204°, Нептун -218°. На самом деле, средняя температура Земли не +27°, а только около 14° или 15°. Чем же это объяснить? Дело в том, что не все лучи Солнца поглощаются планетой, часть их рассеивается облаками, водой, снегами, песками, горами, – вообще почвой того или иного свойства. На основании указанного несогласия температур можно вычислить, что Земля воспринимает около 80 % лучей Солнца, остальные же 20 % рассеивает и отражает в небесное пространство; если бы и другие планеты, как Земля, отбрасывали пятую часть лучей, то температура планет получилась бы такая: Меркурий +176°, Венера +72°, Земля +14°, Марс -35°, Юпитер -145°, Сатурн -179°, Уран -207°, Нептун -221°. Средняя температура астероидов заключается между -35° и -145°. Трудно поэтому предположить, чтобы Марс при средней температуре 35° холода содержал в своих каналах и морях жидкую воду. Ведь температура его ниже средней температуры Земли на целых 49°. И на Земле немалая доля ее поверхности вечно покрыта льдом, снегом с промерзшею землей. Конечно, условия почвы и атмосферы у Марса другие. Если бы допустить одинаковые, то на экваторе Марса нашли бы среднюю температуру на 49° ниже, чем на земном экваторе, т. е. не менее 25° холода. Какая же там может быть вода?

– Ну, а зеркала! Разве не могли бы они нас спасти от этого леденящего холода? – возразил уныло молодой слушатель.

– Могли бы, разумеется, – заметил Ньютон. – В особенности, если бы там не было атмосферы. Ее движение при низкой ее температуре производит такое охлаждение, с которым трудно бороться. Я, однако, не отрицаю возможности успешной борьбы при особых, не имеющихся у нас сейчас приспособлениях. Даже на Юпитере, где температура достигает 145° холода, – и там еще успешная борьба с холодом допустима. Но как бороться с жаром атмосферы Венеры и Меркурия, где он доходит до 72° и 176° теплоты? На полюсах он, конечно, ниже, но туда убийственный жар заносят жидкие и газовые течения, т. е. тамошние океаны и атмосферы. Да и какие газы окружат нас при спуске на чужую планету?! Скафандры и обильный запас кислорода спасли бы нас от ядовитых газов атмосферы, но никто не может поручиться, что сам скафандр, а затем и наши тела не загорятся бенгальским огнем… Я ничего не отрицаю. Все возможно, – бодро сказал Ньютон, – но требует подготовки, трудной и долгой работы, если вы хотите торжествовать над враждебною природой… Иначе она вас раздавит и даже не заметит того…

 


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 138; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь