Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОСНОВНЫЕ ПОКАЗАТЕЛИ РАБОТЫ ГЕНЕРАТОРА



Принцип действия генераторов тока

Принцип действия генератора основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Рис. 1 В прямоугольном контуре вращается постоянный магнит.

Допустим, что однородное магнитное поле, создаваемое постоянным магнитом вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью. Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:

и, где

и — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;

— магнитная индукция магнитного поля в вольт-секундах на квадратный метр ( Тл, Тесла);

— длина каждой из активных сторон контура в метрах;

— линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;

— время в секундах;

и — углы, под которыми магнитные линии пересекают активные стороны контура.

Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,

будет равна, то есть индуктированная электродвижущая сила в контуре изменяется по синусоидальному закону.

Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.

Особенности и устройство генераторов постоянного тока

Рис. 2 Рамка с током вращается в магнитном поле, токосъём происходит щётками с полуколец. Рис. 3 Переменный синусоидальный ток Пульсирующий ток, снимаемый с двух полуколец Выпрямленный и сглаженный ток, снимаемый с якоря с большим количеством контуров и коллекторных пластин

В генераторах постоянного тока неподвижны магниты, создающие магнитное поле и называемые катушками возбуждения, а вращаются катушки, в которых индуктируется электродвижущая сила и с которых производится съём тока. Другая, главная особенность, состоит в способе съёма тока с катушек, который основан на том, что если концы активных сторон контура присоединить не к контактным кольцам (как это делается в генераторах переменного тока), а к полукольцам с изолированными промежутками между ними (как показано на рисунке 2 ) то тогда рамка с током будет давать во внешнюю цепь выпрямленное электрическое напряжение.

При вращении контура вместе с ним вращаются и полукольца вокруг их общей оси. Токосъём с полуколец осуществляется щётками. Так как щётки неподвижны, то они попеременно соприкасаются то с одним, то с другим полукольцом. Обмен полукольцами происходит в тот момент, когда синусоидальная электродвижущая сила в контуре переходит через своё нулевое значение. В результате каждая щётка сохраняет свою полярность неизменной. Если на полукольцах имеется некоторое синусоидальное напряжение, то на щётках оно уже становится выпрямленным (в данном случае пульсирующим). На практике в генераторах постоянного тока применяют не один проволочный контур, а значительно их большее количество, вывод от каждого конца каждого контура присоединяется к собственной контактной пластине, отделённой от соседних пластин изолирующими промежутками. Совокупность контактных пластин и изолирующих промежутков называется колле́ ктор, контактная пластина носит название колле́ кторная пласти́ на. Весь узел в сборе (коллектор, щётки и держатели щёток) называется щёточно-колле́ кторный у́ зел. Материал, из которого изготавливают изолятор между коллекторными пластинами подбирается таким образом, чтобы его твёрдость приблизительно равнялась твёрдости коллекторных пластин (для равномерного износа). Применяется, как правило, миканит (прессованная слюда). Коллекторные пластины, как правило, изготавливают из меди.

Ярмо (статор) шестиполюсного генератора постоянного тока. Видны полюсные наконечники особой формы. Якорь генератора постоянного тока, цилиндр среднего диаметра — коллектор.

Остов (статор) генератора называется ярмо́. К ярму прикреплены сердечники электромагнитов, крышки с подшипниками, в которых вращается вал генератора. Ярмо изготавливается из ферромагнитного материала (литая сталь). На сердечники электромагнитов насажены катушки возбуждения. Чтобы придать магнитным линиям магнитного поля необходимое направление, сердечники электромагнитов снабжаются полюсными наконечниками. Электромагниты, питаемые постоянным током ( током возбуждения ) создают в генераторе магнитное поле. Катушка возбуждения состоит из витков медной изолированной проволоки, намотанной на каркас. Обмотки катушек возбуждения соединены друг с другом последовательно таким образом, что любые два соседних сердечника имеют разноимённую магнитную полярность.

Вращающаяся часть генератора (ротор) называется я́ корь. Сердечник якоря изготавливается из электротехнической стали. Во избежание потерь на вихревые токи сердечник якоря собирается из отдельных стальных листов зубчатой формы, которые образуют впадины (пазы). Во впадины укладывается якорная (силовая) обмотка. В маломощных генераторах якорная обмотка изготавливается из медной изолированной проволоки, в мощных — из медных полос прямоугольной формы. Чтобы под действием центробежных сил якорная обмотка не была вырвана из пазов её закрепляют на сердечнике бандажами. Обмотка якоря наносится на сердечник так, что каждые два активных проводника, соединённых непосредственно и последовательно друг с другом, лежат под разными магнитными полюсами. Обмотка называется волновой, если провод проходит поочерёдно под всеми полюсами и возвращается к исходному полюсу, и петлевой, если провод, пройдя под «северным» полюсом, а затем под соседним «южным» полюсом, возвращается на прежний «северный» полюс.

Чтобы пластины коллектора и изолирующие миканитовые (слюдяные) пластины между ними не были вырваны центробежными силами из своих гнёзд — в нижней части они имеют крепление «ласточкин хвост».

Щётки, как правило, изготавливают из графита. Минимальное число щёток в генераторе постоянного тока равно двум: одна является положительным полюсом генератора (положительная щётка), другая — отрицательным полюсом (отрицательная щётка). В многополюсных генераторах число пар щёток обычно равняется числу пар полюсов, что обеспечивает лучшую работу генератора. Щётки одинаковой полярности (одноимённые щётки) электрически соединены друг с другом.

Щётка одновременно перекрывает две или три коллекторные пластины, это уменьшает искрение на коллекторе под щётками (улучшается коммутация).

Щёткодержатель обеспечивает постоянный прижим щёток вогнутой стороной к цилиндрической поверхности коллектора.

Реакция якоря

Результирующее магнитное поле.

Если генератор постоянного тока не нагружен (холостой ход генератора), то магнитное поле статора (обмоток возбуждения) симметрично относительно оси полюсов S N и геометрической нейтрали (на рисунке обозначено Normal neutral plane). Когда генератор нагружен, то через его якорную обмотку протекает электрический ток и создаёт своё собственное магнитное поле. Магнитные поля статора и ротора накладываются друг на друга и образуют результирующее магнитное поле.

Там, где якорь при своём вращении набегает на полюс электромагнита (магнита) статора, там результирующее поле слабее, там, где сбегает — сильнее. Это объясняется тем, что в первом случае магнитные поля имеют различные направления, а во втором — одинаковые. Если отсутствует магнитное насыщение стали в магнитопроводах — тогда считается что результирующий магнитный поток не изменился по величине.

Однако по конфигурации результирующий магнитный поток значительно изменился, чем больше нагружен генератор и чем больше магнитное насыщение стали в магнитопроводах — тем сильнее проявляется реакция якоря и происходит некоторое уменьшение магнитного потока.

В результате электродвижущая сила генератора уменьшается и наблюдается искрение под щётками на коллекторе.

На практике с реакцией якоря борются:

  1. применяя дополнительные магнитные полюса, компенсирующие магнитное поля якоря;
  2. сдвигая щётки с геометрической нейтрали (Normal neutral plane) за физическую нейтраль (Actual neutral plane), устанавливая их и разворачивая на некоторый угол (на рисунке обозначено Commutating plane), что предупреждает искрение под щётками.

См. также

 

ОСНОВНЫЕ ПОКАЗАТЕЛИ РАБОТЫ ГЕНЕРАТОРА

Величина э.д.с, индуктируемой генератором, прямо пропорциональна магнитному потоку Ф, создаваемому главными полюсами, и частоте вращения якоря п:


где С — постоянный коэффициент, учитывающий число витков обмотки якоря, число пар полюсов и другие постоянные величины, характеризующие данный генератор. Напряжение на выводах генератора меньше его э.д.с. на величину падения напряжения в цепи якоря. Падение напряжения в цепи якоря определяется по закону Ома и равно произведению тока якоря Iя на сопротивление цепи якоря Rя. Следовательно, напряжение на выводах генератора

Общее сопротивление цепи якоря состоит из сопротивлений обмотки якоря, последовательной обмотки возбуждения, обмотки добавочных полюсов, щеток и переходов между коллектором и щетками.
Падение напряжения в цепи якоря очень небольшое, так как сопротивление обмотки якоря мало. Поэтому напряжение генератора бывает лишь незначительно меньше его э.д.с. Из этих двух формул также следует, что величину э.д.с. генератора и напряжения на его зажимах можно изменять двумя способами: изменением магнитного потока полюсов или частоты вращения якоря.
Отдаваемая во внешнюю цепь мощность генератора в киловаттах:

Мощность, отдаваемая генератором, всегда меньше мощности, затрачиваемой на вращение якоря и возбуждение, потому что внутри генератора происходят потери энергии. К этим потерям относятся механические потери (трение в подшипниках, трение коллектора о щетки), потери на нагрев проводов обмотки якоря и обмотки возбуждения, магнитные потери и т. д.
Отношение полезной мощности генератора, т. е. той, которую он отдает во внешнюю цепь, к мощности, затрачиваемой для привода генератора и его возбуждения, называют коэффициентом полезного действия генератора. Если тяговый генератор тепловоза работает с полной нагрузкой, его к.п.д. достигает 94—95%, т. е. потери в нем весьма малы.
Для возбуждения (cсоздания рабочего магнитного потока в электрических машинах) генератора по обмотке его главных полюсов пропускают ток, называемый током возбуждения. По способу возбуждения генераторы разделяются на два типа: генераторы с независимым возбуждением и генераторы с самовозбуждением.
В генераторах с независимым возбуждением обмотка возбуждения получает питание от постороннего источника электрической энергии, обычно от другого генератора постоянного тока или реже от аккумуляторной батареи (рис. 139, а).

Рис. 139. Схемы возбуждения генератора:
а -независимое возбуждение; б - параллельное возбуждение; в - последовательное возбуждение; г - смешанное возбуждение

В генераторах с самовозбуждением питание обмотки возбуждения осуществляется от самого генератора, т. е. током, вырабатываемым в его якоре. При этом используется явление остаточного магнетизма, которым обладает, например, мягкая сталь. Полюсные сердечники из мягкой стали являются постоянными магнитами, хотя и очень слабыми.
В обмотке вращающегося якоря генератора за счет остаточного магнетизма индуктируется небольшая э.д.с. Под действием этой э.д.с. в обмотке возбуждения возникает незначительный ток. Магнитный поток, создаваемый током возбуждения, усилит остаточный магнитный поток полюсов, и э. д. с. якоря возрастет, что в свою очередь приводит к дальнейшему увеличению тока возбуждения. Так последовательно магнитный поток полюсов достигает расчетной величины. Генератор индуктирует необходимую э. д. с. и сам питает током свою обмотку возбуждения.
Генераторы с самовозбуждением в зависимости от схемы соединения обмотки возбуждения с якорем разделяются на три основных типа (рис. 139, б, в, г). В генераторе параллельного возбуждения обмотка главных полюсов включается параллельно силовой цепи.
Ток, вырабатываемый в обмотке якоря, разветвляется: основной ток проходит в силовую цепь, а небольшая часть тока — по обмотке возбуждения. В генераторе последовательного возбуждения обмотка главных полюсов включается последовательно с якорем и по ней проходит весь ток, вырабатываемый генератором. В генераторе со смешанным возбуждением имеются параллельная и последовательная обмотки возбуждения. Сила тока в параллельных обмотках возбуждения обычно ограничивается с помощью резисторов R (см. рис. 139, б, г).
Характеристики генератора, а значит, области его применения зависят от схемы возбуждения. О свойствах генератора прежде всего позволяет судить его внешняя характеристика. Внешней характеристикой генератора называют зависимость напряжения на его зажимах от тока нагрузки при неизменной частоте вращения якоря и заданных условиях возбуждения.
Рассмотрим более подробно условия работы генератора на тепловозе, свойства, которыми он должен обладать, и необходимую его внешнюю характеристику.

 

 


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 1077; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь